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Abstract: Generating point cloud models has become an increasingly popular practice within the machine 

learning community. Human shape data is the key to producing advancements within medical imaging, virtual 

reality, gaming, and animation fields. Learning object structure in 3-dimensional space presents many 

challenges in which deep learning networks have become iteratively capable of resolving. In this paper, we 

utilize a proven generative modeling technique to learn the approximate representation of human body shapes 

on point cloud data from the Semantic Body Models Dataset. By leveraging TreeGAN, a tree-based graph 

convolution generator network, our model is capable of learning the different segments of the human body in an 

unsupervised fashion. This approach combines the classic Generative Adversarial Framework with a nuanced 

generator that boosts its feature representation by sequentially accessing historical prediction states. Due to the 

consistent internal nature of human body shape data, we only sample points from the surface of the body, 

similarly restricting the model’s learned representations. 

 

 

1. INTRODUCTION 

 
1.1 Motivation  

 

Recently, neural networks involving 3D data have 

attracted significant research interest. Since the 

introduction of Point Net in 2016, 3D point clouds 

have emerged as the most computationally efficient 

method of interpreting 3D data [1]. While most work 

has focused on object segmentation, classification, and 

object detection, in 2019 a novel architecture 

(TreeGAN) was proposed for 3D point cloud 

generation [2]. Leveraging the Generative Adversarial 

Network (GAN) [3] framework and tree-based graph 

convolution networks (GCNs), TreeGAN achieved 

seminal results on the ShapeNet40 dataset [2]. 

However, little to no work has been done to expand 

this object generation to more impactful datasets. 

  

The immediate application of human body generation 

is to computer vision and medical imaging fields. The 

interpretation and generation of the human figure is an 

essential computer vision task that has received little 

attention. Furthermore, medical privacy restrictions 

make novel human body generation beneficial to 

training medical students and artificial intelligence 

systems on this data. 

 

1.2 Related Works  

 

1.21 Point Clouds, Neural Networks, and GANs   
 

Most researchers transform point cloud data into 3D 

voxel grids or collections of images before running the 

data through deep learning pipelines. Charles et al. [1] 

proposed PointNet, a novel neural network that 

directly consumes point cloud data, which well 

respects the permutation invariance of point clouds. 

PointNet can be trained to perform 3D shape 

classification, shape part segmentation and scene 

semantic parsing tasks. Since the invention of 

PointNet, point cloud data have been used not just in 

classification networks but also in generative tasks. 

For example, Achlioptas et al. [4] proposed a GAN for 

the generation of 3D points clouds called r-GAN. The 

generator for r-GAN is based on fully connected 



layers, leading to r-GAN having difficulty in 

generating realistic shapes with diversity. 
 

1.22 Improved Training of Wasserstein GANs 
 

A common issue in training GANs is the stability of 

training. Arjovsky et al. [5] introduced Wasserstein 

GAN, which uses an efficient approximation of the 

earth mover's distance function to optimize the 

discriminator and generator in GAN training. WGAN 

improved training stability and provided a meaningful 

loss metric that correlated with the generator's sample 

quality. However, WGAN still suffered from poor 

sample generation or a failure to converge, and it has 

been found that this is due to the weight clipping used 

to enforce a 1-Lipschitz continuous constraint on the 

critic. Gulrajani et al. [6] introduced gradient penalty, 

an alternative to weight clipping. It penalized the norm 

of the critic gradient with respect to the critics input, 

improving the sample quality and ability to converge 

for WGANs. 
 

1.23 Graph Convolutional Networks  
 

Over the past few years, many works have focused on 

using deep neural networks for graph problems. 

Defferrard et al. [7] proposed fast-learning 

convolutional filters for graph-based applications, 

significantly accelerating one of the main 

computational bottlenecks in graph convolution 

problems with large datasets. Kipf and Welling [8] 

introduced scalable GCNs, where convolution filters 

use only the information from neighboring vertices 

instead of from the entire graph. All the GCNs 

mentioned prior are designed for classification 

problems, meaning that the connectivity of nodes in 

the graph were known beforehand. This issue will 

present challenges for the generation of 3D point 

clouds, where the connectivity is not known. 
 

1.24 GCNs and GANs for 3D Point Clouds Generation  
 

A number of works have tackled the issue of 

connectivity. Valsesia et al. [9] dynamically generated 

adjacency matrices using the feature vectors from each 

vertex at each layer of graph convolutions during 

training. Unfortunately, computing this matrix at a 

single layer incurs a quadratic computational 

complexity on the number of vertices. This approach is 

not effective for multi-layer and multi-batch networks. 

Dong et al. [2] proposed TreeGAN, which, like the 

other work, requires no prior knowledge regarding 

connectivity. TreeGAN, however, is much more 

computationally efficient as it avoids constructing 

adjacency matrices. It uses a tree-based graph 

structure, and it exploits this structure by using 

ancestor information to propagate features over the 

graph. The tree-based graph structure also has the 

benefit of allowing the network to generate point 

clouds for different semantic parts of a model without 

prior knowledge. 

 

1.3 Problem Definition 

 
In this paper, we introduce point cloud generation of 

human body shape representations from randomized 

latent vectors. We explore the semantic parametric 

reshaping of human body models dataset [10] (a 

derivative of the Caesar dataset) to train our model. 

Historically, point cloud generation has been explored 

solely on the ShapeNet40 dataset. This dataset 

contains 40 different object classes and enables the 

generator models to produce a wide range of outputs. 

Currently, the TreeGAN paper has achieved state-of-

the-art results on this dataset. We aim to train a 

generator on a single object class with a higher point-

cloud resolution (3072 points) to produce increasingly 

granular results. 

 

 

2. METHODOLOGY 

 
2.1 Dataset  
 

The dataset used to train and evaluate our model is 

composed of 3048 scanned body models. More 

precisely, there are 1531 male models and 1517 female 

models. To generate this dataset, we collected the 

mesh models from the publicly accessible dataset: 

Semantic Body Models Dataset [10]. The decision to 

develop our dataset from the Semantic Body Models 

Dataset is driven by the fact that it is open-sourced and 

completely available to the public and research 

communities. Further, the meshes in this dataset are 

pose-invariant, thus, allowing for more efficient 

learning of the true biological features of the human 

form rather than differences in pose.  

 

https://arxiv.org/abs/1905.06292


Mesh objects are highly memory-intensive due to the 

nature of their vertex-facet construction. Thus, point 

clouds from scanned meshes were built using an even 

surface sampling method to construct the point clouds 

from 3072 evenly spaced points on the surface of the 

mesh. This method of surface sampling was done for 

two reasons. The data points within the volume of the 

mesh do not significantly contribute to the learned 

features of the human form under the assumption that 

models are not hollow; Surface sampling maximizes 

the resolution of features using a point cloud 

representation while also minimizing memory and 

compute costs.  

 
Figure 2 Data example from the Semantic Parametric Reshaping of 

Human Body Models dataset and a point cloud sample used in model 
training. 

2.2 Model Architecture 

 
Our model is built on the GAN framework, in which a 

generator and discriminator model train sequentially 

according to respective loss functions introduced in 

Wasserstein GAN [5].  

 

𝐿𝑔𝑒𝑛  =  −𝐸𝑧∼𝑍[𝐷(𝐺(𝑧))],                    (1) 

 

 

𝐿𝑑𝑖𝑠𝑐  =  𝐸𝑧∼𝑍[𝐷(𝐺(𝑧))] −  𝐸𝑧∼𝑅[[𝐷(𝑥)] 

+𝜆𝑔𝑝𝐸𝑥̂ [(||𝛻𝑥̂𝐷(ˆ𝑥)||
2

 −  1)
2

 ].                (2) 

G and D denote the generator and discriminator 

networks, z is a latent vector created using a normal 

distribution, 𝑥̂ are line segments between real and fake 

point clouds, x ′ ∼ G(z) and x represent real and fake 

point clouds respectively, and R is the real data 

distribution. We also apply a gradient penalty, 𝜆𝑔𝑝, to 

satisfy the 1-Lipshitz condition for GANs.  

 

The generator leverages tree convolutions defined by  

 

 

𝑝𝑙+1 = 𝜎 (𝐹𝐾
𝑙 (𝑝𝑖

𝑙) + ∑ 𝑈𝑖
𝑙𝑞𝑗 + 𝑏𝑙

𝑞𝑗∈𝐴(𝑝𝑖
𝑙)

) , (3) 

 

which is thoroughly described in (tree-GAN).  

 

The generator takes as input a 96-dimensional latent 

vector, and through the convolution defined above, 

conventional convolutional neural network loop terms, 

and upsampling through defined branching, outputs a 

set of 3072 3D points. Figure 1 shows the generator 

built with tree-GCN layers.  

 

As standard in GAN training, the Adam optimizer was 

used with the custom loss functions shown in (1) and 

(2).  

 

3. RESULTS AND DISCUSSION 
 

GAN evaluation metrics are an ongoing discussion 

within the research community as quantitative 

evaluation methods are continuously being introduced 

to measure crucial elements of a Generator’s 

performance. Given the nature of this project, the 

appropriate evaluation metrics are Jensen-Shannon-

Divergence (JSD), Coverage (COV-ED, COV-MMD), 

and Minimum Matching Distance (MMD) [11]. These 

metrics require a MMD comparison between the 

Figure 1 TreeGan Generator Architecture [2] 



reference data and the generator’s closest 

representation per reference example. Our model is 

currently on ~epoch 500 within the training process 

and produces outputs as seen in figures 3, 4. Per 

qualitative examination, the generated results are not 

yet at comparable to the training data and minimum 

matching distance would provide inaccurate pairings 

between the generated and reference examples, 

resulting in a misleading evaluation of the model’s 

efficacy.  

 
Figure 3 Generated Human Body Shape rotated 45 degrees along Z-axis. 

 
Figure 4 Alternate Generated Human Shape (Side View) 

Upon observation, the model has clearly learned the 

basic features of a human body. Specifically, it has 

begun representing the chest, arms, legs, and head. As 

the training progresses, the amount of noise in the 

generated examples is expected to significantly 

decrease. The TreeGAN architecture was designed for 

non-hollow 3D point-cloud data. Due to the hollow 

composition of human shapes within our dataset, the 

generator has had difficulty minimizing its loss on the 

cylindrical-like components of the bodies. 

  

 

4. CONCLUSIONS AND FUTURE WORK 

 
In this project, we trained a TreeGAN model to 

introduce the generation of human body shapes to the 

machine learning community. We discovered a 

drawback when applying this architecture to hollow 

shapes. Future work on this problem should involve 

alterations within the TreeGAN architecture to 

effectively handle hollow data. Interpolation would 

also be an interesting area of exploration for a final 

model to permit controllable generation. 
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