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Abstract—In this work, we generalize results in exact channel
simulation to an exponential communication cost, specifically
to Campbell’s average codeword length L(t) of order t [1],
and to Rényi’s entropy. In exact channel simulation, given a
source of shared randomness, a sender wishes to communicate
a message to the receiver so they can generate a sample from
the conditional distribution PY |X . We lower bound the Campbell
cost of channel simulation using any sampling algorithm, showing
that it grows approximately as It+1(X;Y ), where Iα is an
appropriately defined α-mutual information of order α. Using
the Poisson functional representation of Li and El Gamal [2],
we prove an upper bound on L(t) whose leading α-mutual
information term has order within ϵ of the lower bound. Our
results reduce to the bounds of Harsha et al. [3] as t → 0. We
also provide numerical examples for the additive white Gaussian
noise channel, demonstrating that the upper and lower bounds
are typically within 5-10 bits of each other.

Index Terms—Channel simulation, Rényi entropy, Rényi diver-
gence, α-mutual information, Poisson functional representation,
common randomness, variable-length codes, exponential cost.

I. INTRODUCTION

We consider the problem of exact channel simulation under
an exponential communication cost. As visualized in Fig.
1, given the communication channel PY |X and a source of
randomness U with distribution PU shared by both encoder
and decoder, upon input x ∼ PX the sender communicates a
binary message word M such that the receiver can generate
a sample Y ∼ PY |X( · | x). This problem is called channel
simulation because it uses a digital (noiseless) communication
channel to simulate the behaviour of a noisy communication
channel. We use the qualifier exact to emphasize that the
sample produced must have precise distribution PY |X( · | x),
as opposed to approximate channel simulation, where Y is
allowed to follow PY |X( · | x) only approximately [4].

As studied in [2], [3], [5], among others, the key ques-
tion is how to design a communication protocol such that
the expected length of M , E[|M |], is minimized. Naively
communicating a sample from PY |X( · | x) using lossless
coding is often impossible, as in principle, the sample can have
a continuous distribution. Instead, protocols typically choose
the shared randomness to be a sequence {Ui}i≥1 independent
and identically distributed (i.i.d.) according to the marginal
PY and transmit an index K ∈ N such that the Kth sample in
the shared randomness has exact distribution PY |X( · | x),
i.e., UK ∼ PY |X( · | x). Then, with C : N → {0, 1}∗
denoting a uniquely decodable binary variable-length code and
M = C(K) a binary message with length |M |, the goal is
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to select K and the code C such that E[|M |] is minimized.
Channel simulation, also called reverse channel coding [6]
or relative entropy coding [7], has recently gained significant
theoretical and practical attention due to its promise as an al-
ternative for quantization in deep learning-based compression
systems [7]. There has been a corresponding research effort
to understand the theoretical limits of channel simulation and
its related problems [8], [9].

Generalizing, one may also be concerned about costs other
than the expected message length. Motivated by Campbell’s
lossless source coding theorem [1], we consider one-shot exact
channel simulation under an exponential storage cost. Such a
cost is appropriate for applications where buffer overflow can
occur [10]–[13], and therefore, the cost of long codewords
is especially significant [14]–[16]. Here for a given t > 0,
we aim to minimize the average codeword length of order
t, also called the normalized cumulant generating function of
codeword lengths [14]–[16], given by

L(t) =
1

t
log
(
E[2t|M |]

)
. (1)

As t → 0 in (1), by L’Hôpital’s rule, we recover the average
codeword length, E[|M |]. In this work, we provide Rényi
generalizations of prior results to the Campbell cost L(t). In
Section II, we formally define the problem of exact channel
simulation, review some of the relevant literature, and outline
our contributions. In Section III, we lower bound L(t) for
exact channel simulation using any sampling algorithm. In
Section IV, we use the Poisson functional representation to
prove an upper bound on L(t) whose leading Rényi divergence
term has order within ϵ of the lower bound. We also describe
an operational procedure for encoding the index using a
universal code for integers and prove an upper bound on L(t)
that reduces to the bound of Harsha et al. [3] as t → 0.
In Section V, we give numerical examples in the case of
the additive white Gaussian noise (AWGN) channel. These
examples show that qualitatively, the lower and upper bounds
match in shape and are within 5-10 bits of each other for most
0 < α < 1, even when L(t) is very large.

Notation: For P,Q probability distributions, we write P ≪
Q to indicate that P is absolutely continuous with respect
to Q, in which case dP/dQ denotes the Radon-Nikodym
derivative. For random variables X and Y , we write X ⊥ Y
to indicate that they are independent. We let {0, 1}∗ de-
note the collection of all finite-length binary words, i.e.,
{0, 1}∗ = {0, 1, 00, 01, 10, 11, 000, . . .}, and for a message
M ∈ {0, 1}∗ we write |M | to denote its length. We write
N (µ, σ2) for the normal distribution with mean µ and variance
σ2. Throughout, log is in base 2, all information measures are
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Fig. 1: Block diagram of the problem of exact channel simulation.

in bits, and ln denotes the natural logarithm. N denotes the
natural numbers N = {1, 2, . . .} and Γ is the gamma function.

II. PRELIMINARIES

A. Rényi Information Measures

Let X be a discrete random variable with alphabet X and
distribution PX . For α ∈ (0, 1)∪ (1,∞), we define the Rényi
entropy of order α of X as [17]

Hα(X) =
1

1− α
log

(∑
x∈X

PX(x)α

)
. (2)

Hα(X) is nonincreasing in α, and if Hα(X) < ∞ for some
0 < α < 1, then limα↗1 Hα(X) = H(X), recovering the
Shannon entropy. In [1], Campbell provided an operational
meaning to the Rényi entropy by connecting it with the average
code length of order t, L(t).

Proposition 1 ( [1]). Suppose the discrete random variable X
is encoded using a uniquely decodable binary code C : X →
{0, 1}∗ such that each codeword has length nx := |C(x)|, for
x ∈ X . Then the average code length of order t > 0 given by

L(t) =
1

t
log

(∑
x∈X

PX(x)2tnx

)
, (3)

satisfies
Hα(X) ≤ L(t), (4)

where α = 1
t+1 . Moreover, there exists a uniquely decodable

binary code C such that

L(t) < Hα(X) + 1. (5)

We note that while Campbell’s original proof was for X
with finite alphabet, it can easily be extended to the case of a
countably infinite alphabet. For simplicity, we will often refer
to L(t) as just the Campbell cost. L(t) is a nondecreasing
function of t, and is strictly increasing in t unless all the
lengths nx are equal. As a result, if X takes countably infinite
values, then L(t) → ∞ as t → ∞. If X is finite-valued, then
L(t) → maxx∈X nx as t → ∞.

Rényi also defined the divergence of order α between
probability distributions P and Q, Dα(P ||Q), as

Dα(P ||Q) =
1

α− 1
log

(
EX∼Q

[(
dP

dQ
(X)

)α])
,

where α ∈ (0, 1)∪(1,∞) and it is assumed that P ≪ Q. Note
that limα↗1 Dα(P ||Q) = D(P ||Q), i.e., the KL divergence
is recovered when α ↗ 1 [18].

B. Problem Definition

Let X and Y be random variables whose alphabets are the
respective Polish spaces X and Y . Suppose that X and Y have
joint distribution PXY , marginal distributions PX and PY , and
conditional distribution PY |X( · |x) such that PY |X( · |x) ≪
PY for PX -almost all x. The sender is provided with x ∈ X
generated according to PX and transmits a uniquely decodable
binary message M to the receiver so that they can generate
a single sample y ∈ Y with exact distribution PY |X( · |x).
We assume that both sender and receiver have access to an
unlimited source of common randomness, U ∼ PU . We wish
to minimize the expected Campbell cost,

EX [L(t | X)], (6)

where L(t | X = x) is the expected Campbell cost of M given
input x ∈ X . The minimization is over all common random-
ness U and encoder-decoder pairs such that the message M
is generated by a prefix-free code and the simulated channel
is exact. Observe that as t → 0 (equivalently α → 1) in (6)
we recover EX [E[|M | | X]] = E[|M |]. We henceforth refer to
this problem setup as exact channel simulation.

An important subclass of channel simulation algorithms is
sampling algorithms. In sampling algorithms, the shared ran-
domness is the i.i.d. sequence {Ui}i≥1 distributed according
to the marginal PY and the message is an index K ∈ N
such that the Kth sample has the required distribution, i.e.,
UK ∼ PY |X( · | x). Most state-of-the-art exact channel
simulation algorithms capable of simulating general channels
are sampling algorithms, including (among others) the Poisson
functional representation [2], rejection sampling [3], [5], and
greedy Poisson rejection sampling [19]. Notable examples of
channel simulation algorithms which are not sampling algo-
rithms include subtractive dithered quantization [20] and polar
codes for channel simulation [21], both of which simulate a
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limited family of channels (additive uniform noise and binary
output channels, respectively).

C. Prior Work

The problem of channel simulation was first studied by
Wyner [22], who considered the asymptotic version (com-
municating n samples at a time) without common random-
ness but allowing error between the simulated and target
distributions. Winter [23] showed that, by allowing a shared
source of unlimited randomness, it is possible to simulate
the channel with small error at an asymptotic cost equal to
the mutual information. Bennett et al. [24] showed that the
same result holds even for exact channel simulation. More
recently, Cuff [25], Bennett et al. [26], and Yu and Tan [27]
studied the tradeoff between communication rate and amount
of common randomness in the asymptotic regime. Sriramu
and Wagner [9] and Flamich et al. [28] examined the optimal
rate of exact channel synthesis in the asymptotic case. There
has also been recent work, motivated by applications in deep
learning-based compression, on developing algorithms which
are computationally efficient, e.g. [6], [19], [29]–[32]. We refer
the reader to [33] for a survey of channel simulation methods
and results.

In our problem of one-shot exact channel simulation, a
simple application of the data processing inequality shows the
lower bound E[|M |] ≥ I(X;Y ) [3]. The first achievability
bound is due to Harsha et al. [3], who described a communi-
cation protocol for discrete X and Y for which

E[|M |] ≤ I(X;Y ) + (1 + ϵ) log(I(X;Y ) + 1) + cϵ,

with cϵ a constant depending on ϵ. Their proof effectively
amounts to showing that for each x ∈ X ,

E[logK | X = x] ≤ D(PY |X( · | x) || PY ) + 2 log e,

then encoding K using a universal code and taking expectation
over X ∼ PX . As noted in [2], by using instead a power law
code one can bound E[|M |] ≤ I(X;Y )+log(I(X;Y ) + 1)+
7.78 for discrete X and Y . The Poisson functional representa-
tion, first proposed by Li and El Gamal in [2], has since been
used to prove a tighter upper bound on E[|M |] [34].

Definition 1 (Poisson functional representation [35]). Let U
be a Polish space and P,Q two probability distributions on U
with P ≪ Q. Let {Ti}i≥1 be a rate-one Poisson process and
let {Ui}i≥1 be an i.i.d. sequence distributed according to Q
and independent of {Ti}i≥1. Define

K := argmin
i≥1

Ti

dP
dQ (Ui)

. (7)

It is shown in [35, Appendix A] that under this definition,
UK ∼ P . For P = PY |X( · | x), Q = PY , and K
generated according to Definition 1 and encoded using the
optimal prefix-free code for the Zipf distribution, [34] showed
that

E[|M |] ≤ I(X;Y ) + log(I(X;Y ) + 2) + 3.

Moreover, [2] showed that there exist distributions for which
E[|M |] ≥ I(X;Y ) + log(I(X;Y ) + 1)− 1, i.e., the log term
is necessary in general.

D. Contributions

In this work, we study the Campbell cost, L(t), of one-
shot exact channel simulation algorithms. Although channel
simulation and its associated minimum communication cost
are well-studied problems, to the best of our knowledge, this
natural extension (from linear cost to an exponential cost in
the message lengths) has not been investigated in the literature.
Our main contributions can be summarized as follows:

• We lower bound EX [L(t | X)] for channel simulation
using any sampling algorithm, showing that it grows
approximately as EX [D 1

α
(PY |X( · | X) || PY )], where

α = 1
1+t .

• The lower bound motivates the definition of an α-mutual
information, Iα(X;Y ) := EX [Dα(PY |X( · | x) || PY )],
for which we prove several properties one expects of any
α-mutual information.

• We use the Poisson functional representation to prove the
upper bound EX [L(t | X)] ≤ (1 + ϵ)I 1+ϵ(1−α)

α
(X;Y ) +

c1(α, ϵ), for any 0 < α < 1 and ϵ > 0, where c1(α, ϵ)
is a constant depending on α and ϵ. Using numerical
examples, we demonstrate that this upper bound is within
5-10 bits of the lower bound, even for distributions where
L(t) is large.

• We describe an operational procedure for encoding the
communicated index using a universal code that gives
L(t) ≤ I 2−α

α
(X;Y ) + (1 + ϵ) log(I(X;Y ) + 1) + c2(ϵ),

for any 2/3 < α < 1 and 0 < ϵ ≤ 3α−2
2−2α , where c2(ϵ)

is a constant. We show that this upper bound reduces to
the bound of Harsha et al. [3] as α → 1.

III. LOWER BOUND ON THE CAMPBELL COST

We present our main results as bounds on the Campbell
cost L(t), but using Proposition 1 can write them as bounds on
Hα(K) within one bit (this will be formalized in Corollary 1).
In this section, we will prove a lower bound on the Campbell
cost of exact channel simulation of any sampling algorithm.
Note that for all 0 < α < 1 and with t = 1−α

α , one has the
trivial lower bound

L(t) ≥ Hα(K) ≥ H(K) ≥ I(X;Y ),

where the final inequality follows as in [3]. However, such
a lower bound loses the dependency on α, which is key to
understanding Hα(K) and L(t).

Theorem 1. Let X and Y be random variables with con-
ditional distribution PY |X satisfying the assumptions of the
exact channel simulation problem (see Section II-B). Suppose
that we are using any sampling algorithm, i.e., the shared
source of randomness is the i.i.d. sequence {Ui}i≥1 distributed
according to PY and the message is an index K ∈ N such that
UK ∼ PY |X( · | x). Then, for any 0 < α < 1 with t = 1−α

α ,
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any uniquely decodable binary encoding of K has expected
Campbell cost

EX [L(t | X)]

≥ EX [D 1
α
(PY |X(Y | X) || PY )] +

α

1− α
log(α)− 1. (8)

Proof. We fix x ∈ X and show that L(t | X = x) ≥
D1/α(PY |X( · | x) || PY )+

α
1−α log(α)−1; taking expectation

with respect to X ∼ PX will give the result. We use the
following lemma, adapted from [36], whose proof can be
found in [37].

Lemma 1. Let P ≪ Q be probability distributions on a
Polish space U and suppose that both sender and receiver
have access to an i.i.d. sequence {Ui}i≥1 drawn from Q. Let
K be the output of any sampling algorithm, i.e., UK ∼ P .
Then, for any 0 < α < 1 and bijection g : N → N,

E[(g(K))α] ≥ 1

1 + α
2αDα+1(P ||Q). (9)

Let g : N → N be the bijection which orders K̃ := g(K) so
that its probability distribution is nonincreasing. The optimal
one-to-one encoding of K̃ (under the Campbell cost) will have
codeword lengths ⌊log(k + 1)⌋. The cost of this encoding
lower bounds the Campbell cost of any uniquely decodable
encoding of K̃ (equivalently, lower bounds the Campbell cost
of encoding K) as

L(t) ≥ 1

t
log

( ∞∑
k=1

p̃(k)2t⌊log(k+1)⌋

)
≥ 1

t
log
(
E[K̃t]

)
− 1

≥ 1

t
log

(
1

1 + t
2tDt+1(PY |X( · |x)||PY )

)
− 1. (10)

where (10) follows from Lemma 1 with P = PY |X( · | x) and
Q = PY . Substituting α = 1

1+t gives the desired inequality.

As α → 1 in (8), we recover the bound E[|M |] ≥
EX [D(PY |X(Y | X) || PY )]− 1

ln(2)−1 = I(X;Y )− 1
ln(2)−1,

the same lower bound as in [3] with a small penalty term of
−1
ln(2) − 1. To the best of our knowledge, the leading term
in (8), EX [D 1

α
(PY |X(Y | X) || PY )], is not a previously

defined α-mutual information [38], [39]. It is similar to the
Augustin-Csiszár α-mutual information, which is defined as
the minimum minQ EX [Dα(PY |X( · | X) || Q)] [39], but can
be more accurately thought of as a Rényi generalization of
I(X;Y ) = EX [D(PY |X( · | X) || PY )]. We define

Iα(X;Y ) := EX [Dα(PY |X(Y | X) || PY )]

and will refer to the lower bound in (8) as LBα := I 1
α
(X;Y )+

α
1−α log(α) − 1. The following proposition collects some
important properties of Iα(X;Y ), justifying its definition as
an α-mutual information.

Proposition 2. Let X and Y be general random variables
with PY |X( · | x) ≪ PY for PX -almost every x, and let

α ∈ (0, 1) ∪ (1,∞). Then, Iα(X;Y ) satisfies the following
properties.

(I) lim
α→1

Iα(X;Y ) = I(X;Y ). (Recovers MI)
(II) Iα(X;Y ) ≥ 0. (Nonnegativity)

(III) Iα(X;Y ) = 0 ⇔ X ⊥ Y . (Positivity)
(IV) For α1 < α2, Iα1

(X;Y ) ≤ Iα2
(X;Y ). (Monotonicity)

(V) For X discrete, Iα(X;X) = H(X). (Self-information)
(VI) For a random variable Z forming the Markov chain X →

Y → Z with PZ|X( · | x) ≪ PZ for PX -almost every x,
Iα(X;Z) ≤ Iα(X;Y ). (Data processing inequality)

(VII) If the pairs of random variables {(Xi, Yi)}1≤i≤n

are independent, then Iα(X1, . . . , Xn;Y1, . . . Yn) =∑n
i=1 Iα(Xi;Yi). (Additivity)

Proof. (I), (II), (IV), (VI), (VII): Follow as immediate con-
sequences of properties of the Rényi divergence (recovery of
KL divergence, nonnegativity, monotonicity, data processing
inequality, and additivity [18]), which apply pointwise for each
x ∈ X and therefore also in expectation.

(III): If X ⊥ Y , PY |X( · | x) = PY for every x ∈ X ,
hence Dα(PY |X( · | x) || PY ) = Dα(PY || PY ) = 0 and
Iα(X,Y ) = 0. Conversely, if Iα(X;Y ) = 0 then, by the
equality condition of the Rényi divergence being 0, PY |X( · |
x) = PY for PX -almost x ∈ X and X ⊥ Y .

(V): Let X be discrete, then PX|X( · | x) = 1x (where
1{·} denotes the indicator function) and Dα(1x||PX) =
1

α−1 log
(∑

x′∈X 1x(x
′)α PX(x′)1−α

)
= − log PX(x). Thus,

Iα(X;X) = EX [− log PX ] = H(X).

Like most α-mutual informations, Iα(X;Y ) is not sym-
metric and does not admit a clean chain rule. Theorems 1
and 2 give Iα(X;Y ) an operational meaning for the channel
simulation problem.

IV. UPPER BOUNDS USING THE POISSON FUNCTIONAL
REPRESENTATION

Theorem 1 tells us that the minimum Campbell cost of
channel simulation using any sampling algorithm grows ap-
proximately as I 1

α
(X;Y ). The natural question is whether any

channel simulation algorithms exist that achieve this lower
bound. Suppose that we could bound EX [L(t | X)] ≤
I 1

α
(X;Y ) +C for some constant C and all random variables

X,Y . Then, taking α → 1 (equivalently t → 0) would yield
E[|M |] ≤ I(X;Y ) + C, a bound shown to be invalid by
an explicit counter-example [2]. Therefore, it is reasonable to
conjecture that a tight and general upper bound, valid for all
X and Y , does not exist for the Campbell cost, either. Instead,
we have the following upper bound on L(t) using the Poisson
functional representation.

Theorem 2. Let X and Y be random variables satisfying the
assumptions of the exact channel simulation problem and let
K be the output of the Poisson functional representation given
that the shared randomness between sender and receiver is the
i.i.d. sequence {Ui}i≥1 distributed according to PY . Then, for
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any 0 < α < 1 and ϵ > 0, there exists a uniquely decodable
encoding of K such that

EX [L(t | X)] ≤ (1 + ϵ)I 1+ϵ(1−α)
α

(X;Y ) + c1(α, ϵ), (11)

with t = 1−α
α and c1(α, ϵ) a constant term defined as

c1(α, ϵ) :=

(1 + ϵ) log e+ 1 + log

(
1 +

1

ϵ

)
,

1

2
< α < 1 and

0 < ϵ <
2α− 1

1− α
α

1− α
log

(
Γ

(
1 + ϵ(1− α)

α

))
+4 + 3ϵ− 2α

1− α
+ log

(
1 +

1

ϵ

), 0 < α <
1

2
or

ϵ ≥ 2α− 1

1− α

(12)

We will refer to the upper bound in (11) as UBα
1 :=

(1+ ϵ)I 1+ϵ(1−α)
α

(X;Y )+c1(α, ϵ). Before proving Theorem 2,
we state two lemmas which will be used to upper bound the
moments of K.

Lemma 2. Let K be the output of the Poisson functional
representation given two probability distributions P,Q on the
Polish space U with P ≪ Q. Then,

E [logK] ≤ D(P ||Q) + 1, (13)

and for 0 < α < 1,

E [Kα] ≤ 2αDα+1(P ||Q) + α. (14)

Equation (13) was proved in [34], and the upper bound
in (14) follows from [35, Prop. 4] after substituting j = 1. We
note that for 0 < α < 1 and g(k) = k, the Poisson functional
representation in (14) almost achieves the lower bound on the
α-moment of any sampling algorithm in Lemma 1.

Lemma 3. Let X ∼ Geo(p) be a geometric random variable
with parameter 0 < p < 1. Then, for any r ≥ 1,

E[Xr] ≤ 2r−1

(
Γ(r + 1)

pr
+ 1

)
.

The proof of Lemma 3 can be found in [37].

Proof of Theorem 2. As in the proof of Theorem 1, we con-
dition on X = x and will show that L(t | X = x) ≤
(1 + ϵ)D 1+ϵ(1−α)

α
(PY |X( · | x) || PY ) + c1(α, ϵ); taking

expectation with respect to X ∼ PX will show the theorem.
We will prove the desired inequality in two cases. In both
cases, we will relate the Campbell cost L(t) to the expected
moments of Kr, with r = 1−α

α (1+ϵ). For r < 1 (equivalently
ϵ < 2α−1

1−α ), we will bound the moments of K using (14) in
Lemma 2, while in the case r ≥ 1 (equivalently ϵ ≥ 2α−1

1−α )
we will use the bound on the moments of a geometric random
variable in Lemma 3.

Fix 1/2 < α < 1 and 0 < ϵ < 2α−1
1−α . Then, by

the Kraft inequality, there exists a uniquely decodable code
C : N → {0, 1}∗ with codeword lengths |C(k)| ≤ (1 +
ϵ) log k + 1 + log

(
1 + 1

ϵ

)
. Let t = 1−α

α . Then, 0 < t < 1

and 0 < ϵ < 2α−1
1−α = 1−t

t imply that t(1 + ϵ) < 1, so we can
apply the upper bound on E [Kα] in (14) to get

L(t | X = x) (15)

≤ 1

t
log

( ∞∑
k=1

p(k)2t(1+ϵ) log k+t+t log(1+ 1
ϵ )

)
≤ 1

t
log
(
2(1+ϵ)tD(1+ϵ)t+1(PY |X( · |x)||PY ) + (1 + ϵ)t

)
+ 1 + log

(
1 +

1

ϵ

)
(16)

≤ (1 + ϵ)D(1+ϵ)t+1(PY |X( · | x) || PY ) + (1 + ϵ) log e

+ 1 + log

(
1 +

1

ϵ

)
. (17)

Here, (16) follows from (14) and (17) from log(x+ a) ≤
log(x) + a log e for all x ≥ 1 and a > 0. Noting that (1 +

ϵ)t+ 1 = 1+ϵ(1−α)
α gives the desired bound.

Suppose now that 0 < α < 1 and ϵ ≥ 2α−1
1−α , so that with

t = 1−α
α , (1 + ϵ)t ≥ 1. From [35, Eq. 29] (after substituting

j = 1), for any u ∈ U ,

K | {UK = u} ∼ Geo(β(u)), (18)

for β(u) = EU∼PY

[
max

{
dPY |X( · |x)

dPY
(u),

dPY |X( · |x)
dPY

(U)
}]−1

.
By Lemma 3, for r = (1 + ϵ)t ≥ 1,

E[Kr | UK = u]

≤ 2r−1

(
Γ(r + 1)

β(u)r
+ 1

)
≤ Γ(r + 1)22r−2

((
dPY |X( · | x)

dPY
(u)

)r

+ 1

)
+ 2r−1.

Taking expectation with respect to UK ∼ PY |X( · | x), we
get that

E[Kr] ≤ Γ(r + 1)22r−2
(
2rDr+1(PY |X( · |x)||PY ) + 1

)
+ 2r−1.

(19)
Again encoding K using a uniquely decodable code C with
codeword lengths |C(k)| ≤ (1+ ϵ) log k+1+ log

(
1 + 1

ϵ

)
and

writing r = (1+ ϵ)t and c(ϵ) = 1+ log
(
1 + 1

ϵ

)
, we have that

L(t | X = x)

≤ 1

t
log(E[Kr]) + c(ϵ)

≤ 1

t
log
(
Γ(r + 1)22r−2

(
2rDr+1(PY |X( · |x)||PY ) + 1

)
+ 2r−1

)
+ c(ϵ) (20)

≤ 1

t
log
(
Γ(r + 1)22r−2

(
2rDr+1(PY |X( · |x)||PY ) + 1

))
+

1

t
log
(
2r−1

)
+ c(ϵ) (21)

≤ 1

t
log
(
2rDr+1(PY |X( · |x)||PY )

)
+

1

t
log(Γ(r + 1))

+
2r − 2

t
+

1

t
+

r − 1

t
+ c(ϵ). (22)

Here, (20) follows by (19), while (21) and (22) both follow
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from the inequality log(x+ 1) ≤ log(x) + 1 for all x ≥ 1.
Substituting r = (1 + ϵ)t and t = 1−α

α gives the statement of
the theorem.

The α-mutual information term in UBα
1 has order 1+ϵ(1−α)

α ,
which as ϵ → 0 goes to 1

α , the order of the α-mutual term
in LBα. We see that the Poisson functional representation
almost achieves the lower bound on the Campbell cost among
all sampling-based channel simulation schemes. However,
c1(α, ϵ) → ∞ as ϵ → 0, thus UBα

1 is not tight. Numerical
examples in Section V demonstrate that, after minimizing over
ϵ > 0, UBα

1 is typically within 5-10 bits of LBα. As α → 1,
we obtain the upper bound on the expected message length
E[|M |] ≤ (1 + ϵ)I(X;Y ) + (1 + ϵ) log e + 1 + log

(
1 + 1

ϵ

)
,

for any ϵ > 0. This bound is generally looser than the
bound from the strong functional representation lemma [2],
but better than the upper bound E[|M |] ≤ I(X;Y ) + (1 +
ϵ) log(I(X;Y ) + 1) + cϵ by Harsha et al. [3]. However, UBα

1

could be operationally difficult to achieve, as it requires
constructing a uniquely decodable encoding of the positive
integers with codeword lengths |C(k)| ≈ (1 + ϵ) log k for all
k. The bounds of [2] and [3] have the operational advantage
of encoding K using a power law code and universal code.
In our problem, encoding K using a universal code gives the
following upper bound, which is strictly worse than UBα

1 .

Theorem 3. Let X and Y be random variables satisfying
the assumptions of the exact channel simulation problem and
let K be the output of the Poisson functional representation
given that the shared randomness between sender and receiver
is the i.i.d. sequence {Ui}i≥1 distributed according to PY .
Then, for any 2/3 < α < 1 and 0 < ϵ ≤ 3α−2

2−2α , encoding
K using a universal code C with codeword lengths |C(k)| =
log k + (1 + ϵ) log log(k + 1) +O(1) gives

EX [L(t | X)] ≤ I 2−α
α

(X;Y )

+ (1 + ϵ) log(I(X;Y ) + 1) + c2(ϵ),

with t = 1−α
α and c2(ϵ) = 3 + ϵ+ log

(
ln(2)
ϵ + 3

2

)
.

Proof. Fix X = x and let 2/3 < α < 1 and 0 < ϵ ≤ 3α−2
2−2α .

We will bound L(t | X = x) using a universal coding of the
natural numbers and then take expectation with respect to X ∼
PX to get the desired result. In particular, using the prefix-free
encoding C described in [40, Ex. 1.11.16] (see also [3]) we can
set |C(k)| ≤ log k+(1+ϵ) log log(k + 1)+1+log

(
ln(2)
ϵ + 3

2

)
for any ϵ > 0. Since t = 1−α

α , 0 < t < 1/2. Then,

L(t | X = x)

≤ 1

t
log
(
E
[
Kt log(K + 1)

(1+ϵ)t
])

+ 1 + log

(
ln(2)

ϵ
+

3

2

)
≤ 1

t
log

(√
E[K2t]E[log(K + 1)

2(1+ϵ)t
]

)
+ 1 + log

(
ln(2)

ϵ
+

3

2

)
(23)

=
1

2t

(
log
(
E[K2t]

)
+ log

(
E[log(K + 1)

2(1+ϵ)t
]
))

+ 1 + log

(
ln(2)

ϵ
+

3

2

)
. (24)

Here, (23) follows from the Cauchy-Schwartz inequality. Us-
ing Jensen’s inequality (which applies as 2(1 + ϵ)t ≤ 1) we
can bound

1

2t
log
(
E[log(K + 1)

2(1+ϵ)t
]
)

≤ 1

2t
log
(
E[log(K + 1)]2(1+ϵ)t

)
= (1 + ϵ) log

(
E[log(K + 1)]

)
≤ (1 + ϵ) log

(
E[logK] + 1

)
(25)

≤ (1 + ϵ) log
(
D(PY |X( · | x) || PY ) + 1 + 1

)
(26)

≤ (1 + ϵ) log
(
D(PY |X( · | x) || PY ) + 1

)
+ 1 + ϵ. (27)

Here, (25) and (27) both follow from the inequality
log(x+ 1) ≤ log(x) + 1 for all x ≥ 1 and (26) follows from
the upper bound on E [logK] in Lemma 2, (13). In the first
term of (24), because 0 < t < 1/2 by assumption, we can
apply the upper bound on E [Kα] in Lemma 2 to get that

1

2t
log
(
E[K2t]

)
≤ 1

2t
log
(
22tD2t+1(P ||Q) + 2t

)
≤ D2t+1(PY |X( · | x) || PY ) + 1, (28)

where (28) holds again by log(x+ a) ≤ log(x)+ a. Combin-
ing (27) and (28), and noting 2t + 1 = 2−α

α , we obtain the
bound

L(t | X = x)

≤ D 2−α
α

(PY |X( · | x) || PY )

+ (1 + ϵ) log
(
D(PY |X( · | x) || PY ) + 1

)
+ c2(ϵ).

Taking expectation with respect to X ∼ PX gives

EX [L(t | X)]

≤ I 2−α
α

(X;Y )

+ (1 + ϵ)EX [log
(
D(PY |X( · | x) || PY ) + 1

)
] + c2(ϵ)

≤ I 2−α
α

(X;Y ) + (1 + ϵ) log(I(X;Y ) + 1) + c2(ϵ), (29)

where (29) follows from applying Jensen’s inequality to log.

We will refer to the upper bound in Theorem 3 as
UBα

2 := I 2−α
α

(X;Y ) + (1 + ϵ) log(I(X;Y ) + 1) + c2(ϵ).
As α → 1, UBα

1 reduces to E[|M |] ≤ I(X;Y ) + (1 +
ϵ) log(I(X;Y ) + 1) + c2(ϵ) for any ϵ > 0, the same upper
bound as in [3]. Note that UBα

2 is valid only for 2/3 < α < 1,
whereas UBα

1 is valid for all 0 < α < 1. Moreover, for
all 2/3 < α < 1, UBα

1 < UBα
2 . To see why, observe

that for ϵ < 1, 1+ϵ(1−α)
α < 2−α

α , i.e., the order of the
leading α-mutual information is strictly less in UBα

1 . Since
Iα(X;Y ) is nondecreasing in α (see Proposition 2), one has
I 1+ϵ(1−α)

α
(X;Y ) ≤ I 2−α

α
(X;Y ). As c1(α, ϵ) < c2(ϵ) for all

2/3 < α < 1, there exists ϵ > 0 such that UBα
1 is better even
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(a) σ2 = 1 and ρ2 = 1 (b) σ2 = 25 and ρ2 = 1 (c) σ2 = 100 and ρ2 = 1

Fig. 2: Comparison of the bounds on the Campbell cost for the AWGN channel, for 0.2 < α < 1.

for small Iα(X;Y ). Numerical results, shown in Section V,
illustrate this conclusion.

While Theorems 1 to 3 are bounds on the Campbell cost,
we can use Proposition 1 to obtain bounds on Hα(K).

Corollary 1. Let X and Y be random variables satisfying the
assumptions of the exact channel simulation problem. Suppose
that a sampling algorithm is used, i.e., the shared randomness
is the i.i.d. sequence {Ui}i≥1 distributed according to PY and
upon input x ∈ X an index K is outputted such that UK ∼
PY |X( · | x). Then, for any 0 < α < 1, EX [Hα(K | X)] >
LBα − 1, with LBα given in Theorem 1. Moreover for K the
output of the Poisson functional representation, for any 0 <
α < 1 and ϵ > 0, we have that EX [Hα(K | X)] ≤ UBα

1 , with
UBα

1 given in Theorem 2.

Proof. The upper bound is immediate after substitution in (4)
in Proposition 1. The lower bound follows from (5) in Proposi-
tion 1, specifically that for any sampling algorithm outputting
K, there exists an encoding of K such that L(t) < Hα(K)+1.
Then, the lower bound L(t) ≥ LBα of Theorem 1 applies to
this sampling algorithm and encoding, meaning Hα(K) >
LBα − 1.

V. NUMERICAL EXAMPLES

In this section, we give numerical examples comparing LBα,
UBα

1 , and UBα
2 from Theorems 1 to 3. We consider the AWGN

channel with input X ∼ N (0, σ2) and output Y = X +
Z, Z ∼ N (0, ρ2). Here, σ2, ρ2 ∈ R≥0 are the respective
variances of the input and additive noise. One can compute
that PY |X( · | x) = N (x, ρ2) and the marginal distribution
is PY = N (0, σ2 + ρ2). Trying to losslessly communicate a
sample from a normal distribution is not possible; however,
by allowing a access to a shared source of randomness, we
can communicate the sample with finite cost. By the formula
for the Rényi divergence between two Gaussians [41, p. 45]
(see also [42]),

Dα(PY |X( · | x) || PY )

=
1

2
ln

(
1 +

σ2

ρ2

)
+

ln
(

σ2+ρ2

ρ2+ασ2

)
2(α− 1)

+
1

2

αx2

ρ2 + ασ2
,

and we can take expectation with respect to X ∼ PX to get
that

Iα(X;Y ) =
1

2
ln

(
1 +

σ2

ρ2

)
+

ln
(

σ2+ρ2

ρ2+ασ2

)
2(α− 1)

+
1

2

ασ2

ρ2 + ασ2
.

One can confirm that as α → 1, we recover the standard
expression I(X;Y ) = 1

2 log
(
1 + σ2

ρ2

)
. Fig. 2 compares the

bounds for fixed ρ2 = 1 and three increasing choices of σ2;
note that the true minimum EX [L(t | X)] of any sampling
algorithm is guaranteed to lie between UBα

1 and LBα. We
have only shown the bounds for 0.2 < α < 1 for display
reasons, as UBα

1 goes to ∞ as α → 0. In both upper bounds,
for each value of α, the bound is optimized over ϵ to find the
minimum value. As discussed in Section IV, in all cases UBα

1

is tighter than UBα
2 for all 2/3 < α < 1.

VI. CONCLUSION

In this paper, we have generalized bounds on the expected
communication cost of one-shot exact channel simulation to
the Campbell cost and Rényi’s entropy. Such bounds are
useful in situations where one wishes to disproportionally
penalize long codewords, such as applications with buffer
overflow. There are several interesting directions of future
work stemming from these results. Most obviously, it is an
open question if one can prove the lower bound EX [L(t |
X)] ≥ I1/α(X;Y ) for any channel simulation algorithm,
not just sampling schemes. We conjecture that such a bound
is true, but it is not an immediate application of the data
processing inequality like in the Shannon case. It is also
interesting to consider whether one can tighten UBα

1 to be
in the spirit of [2], specifically so that it reduces to E[|M |] ≤
I(X;Y )+log(I(X;Y ) + 1)+O(1) as α → 1. More generally,
the strong functional representation lemma has been applied to
several problems outside of one-shot exact channel simulation,
most notably one-shot variable-length lossy source coding and
multiple description coding [2]. It would be interesting to see
if the strong functional representation lemma can play a role
in information-theoretic coding problems using the Campbell
cost or Rényi entropy.
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divergence,” IEEE Transactions on Information Theory, vol. 60, no. 7,
pp. 3797–3820, 2014.

[19] G. Flamich, “Greedy Poisson rejection sampling,” Advances in Neural
Information Processing Systems, vol. 36, pp. 37 089–37 127, 2023.

[20] R. Zamir and M. Feder, “On universal quantization by randomized
uniform/lattice quantizers,” IEEE Transactions on Information Theory,
vol. 38, no. 2, pp. 428–436, 2002.

[21] S. Sriramu, R. Barsz, E. Polito, and A. Wagner, “Fast channel simulation
via error-correcting codes,” Advances in Neural Information Processing
Systems, vol. 37, pp. 107 932–107 959, 2024.

[22] A. Wyner, “The common information of two dependent random vari-
ables,” IEEE Transactions on Information Theory, vol. 21, no. 2, pp.
163–179, 1975.

[23] A. Winter, “Compression of sources of probability distributions and
density operators,” arXiv preprint quant-ph/0208131, 2002.

[24] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal,
“Entanglement-assisted capacity of a quantum channel and the reverse

Shannon theorem,” IEEE transactions on Information Theory, vol. 48,
no. 10, pp. 2637–2655, 2002.

[25] P. Cuff, “Distributed channel synthesis,” IEEE Transactions on Informa-
tion Theory, vol. 59, no. 11, pp. 7071–7096, 2013.

[26] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, “The
quantum reverse Shannon theorem and resource tradeoffs for simulating
quantum channels,” IEEE Transactions on Information Theory, vol. 60,
no. 5, pp. 2926–2959, 2014.

[27] L. Yu and V. Y. Tan, “Exact channel synthesis,” IEEE Transactions on
Information Theory, vol. 66, no. 5, pp. 2799–2818, 2019.

[28] G. Flamich, S. M. Sriramu, and A. B. Wagner, “The redundancy of non-
singular channel simulation,” arXiv preprint arXiv:2501.14053, 2025.

[29] G. Flamich, S. Markou, and J. M. Hernández-Lobato, “Fast relative
entropy coding with a* coding,” in Proc. International Conference on
Machine Learning, 2022, pp. 6548–6577.

[30] ——, “Faster relative entropy coding with greedy rejection coding,” Ad-
vances in Neural Information Processing Systems, vol. 36, pp. 50 558–
50 569, 2023.

[31] S. Sriramu, R. Barsz, E. Polito, and A. Wagner, “Fast channel simulation
via error-correcting codes,” Advances in Neural Information Processing
Systems, vol. 37, pp. 107 932–107 959, 2024.

[32] G. Flamich and L. Theis, “Adaptive greedy rejection sampling,” in Proc.
IEEE International Symposium on Information Theory (ISIT), 2023, pp.
454–459.

[33] C. T. Li, Channel Simulation: Theory and Applications to Lossy Com-
pression and Differential Privacy. Now Publishers, Inc., 2024, vol. 21,
no. 6.

[34] ——, “Pointwise redundancy in one-shot lossy compression via Poisson
functional representation,” arXiv preprint arXiv:2401.14805, 2024.

[35] C. T. Li and V. Anantharam, “A unified framework for one-shot
achievability via the Poisson matching lemma,” IEEE Transactions on
Information Theory, vol. 67, no. 5, pp. 2624–2651, 2021.
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