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Channel Simulation

Use noiseless channel to simulate noisy channel X → Y

When the goal is to efficiently communicate M , one can achieve

E|M | ≈ I(X;Y ) bits
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Why Care?
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Neural Compression via Nonlinear Transform Coding

JPEG

Image credits Ballé et al. (2017).
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Neural Compression with Channel Simulation

Fully differentiable end-to-end system trained via the
reparameterization trick!

Image credits Flamich et al. (2020).
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Other Applications

Lossy source coding

Rate-distortion-perception tradeoff

Compression via implicit neural representation

Local differential privacy

Federated learning, . . .
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Channel Simulation from Sampling

Common randomness is i.i.d. sequence {Ui}i≥1 ∼ PY

Transmit index K such that UK ∼ PY |X
Sampling: for sampling from general P given access to sequence
from Q, one can achieve

E|M | ≈ D(P ||Q) bits

Sampling can simulate X → Y with communication cost

E|M | ≈ EX [D(PY |X( · | X) || PY )] = I(X;Y ) bits
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Sampling Algorithms

Greedy Rejection Sampling: Accept/reject each Uk

sequentially, maximizing the acceptance probability each stage
under the condition that the scheme is exact.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 1) + 4

Poisson Functional Representation: For {Ti}i≥1 a rate-one

Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 2) + 3

S. Hill September 18, 2025 10 / 22



Sampling Algorithms

Greedy Rejection Sampling: Accept/reject each Uk

sequentially, maximizing the acceptance probability each stage
under the condition that the scheme is exact.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 1) + 4

Poisson Functional Representation: For {Ti}i≥1 a rate-one

Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 2) + 3

S. Hill September 18, 2025 10 / 22



Sampling Algorithms

Greedy Rejection Sampling: Accept/reject each Uk

sequentially, maximizing the acceptance probability each stage
under the condition that the scheme is exact.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 1) + 4

Poisson Functional Representation: For {Ti}i≥1 a rate-one

Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 2) + 3

S. Hill September 18, 2025 10 / 22



Sampling Algorithms

Greedy Rejection Sampling: Accept/reject each Uk

sequentially, maximizing the acceptance probability each stage
under the condition that the scheme is exact.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 1) + 4

Poisson Functional Representation: For {Ti}i≥1 a rate-one

Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
.

D(P ||Q) ≤ E|M | ≤ D(P ||Q) + log2(D(P ||Q) + 2) + 3

S. Hill September 18, 2025 10 / 22



Our Setup: Exponential Cost and Rényi’s entropy

The previous results are for the expected message length (number
of bits) E|M |.

What are the fundamental limits of exact sampling and channel
simulation under a cost which is exponential in the message
lengths? Can these limits be (almost) achieved by existing
algorithms?
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Campbell Cost L(t)

For uniquely decodable binary encoding M ∈ {0, 1}∗ of K having
length |M | and for t > 0,

L(t) =
1

t
log

(
E[2t|M |]

)
.

Facts:

lim
t→0

L(t) = E|M | and lim
t→∞

L(t) = max
ℓ∈N : P(|M |=ℓ)>0

ℓ

For a random variable K with Rényi entropy Hα(K) encoded
optimally into message M , Campbell (1965) showed

Hα(K) ≤ L(t) < Hα(K) + 1

with α = 1
1+t .
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Why Care About L(t)?
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0.2 5 5.65 11.83
1 5 7.26 ∞
5 5 8.56 ∞
∞ 5 9 ∞

S. Hill September 18, 2025 13 / 22



Why Care About L(t)?

0

0.2

0.4

0.6

0.8

1

ℓ

P(
|M

|=
ℓ)

Degenerate at 5

0

0.2

0.4

0.6

0.8

1

ℓ

P(
|M

|=
ℓ)

Uniform on {1, . . . , 9}

0

0.2

0.4

0.6

0.8

1

ℓ

P(
|M

|=
ℓ)

Geometric (p = 0.2)

t Degenerate L(t) Uniform L(t) Geometric L(t)

0 5 5 5
0.2 5 5.65 11.83
1 5 7.26 ∞
5 5 8.56 ∞
∞ 5 9 ∞

S. Hill September 18, 2025 13 / 22



Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with α = 1
1+t ,

L(t) ≥ D 1
α
(P ||Q) +

α

1− α
log2(α)− 1. (1)

As t → 0, we recover the lower bound

E|M | ≥ D(P ||Q)− 1

ln(2)
− 1.
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Upper Bound via Poisson Functional Representation

Theorem 2 For K chosen using the Poisson functional representation,
for any ϵ > 0 there exists a uniquely decodable encoding of K such that

L(t) ≤ (1 + ϵ)D 1+ϵ(1−α)
α

(P ||Q) + c(α, ϵ), (2)

with c(α, ϵ) a constant and α = 1
1+t .
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Gaussian Examples

P = N (0, 1) and Q = N (1, 1) P = N (0, 1) and Q = N (5, 1)
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Asymptotic Results

We want to use the channel n-times with i.i.d. input X1, . . . , Xn.
Thus we sample from the product distribution P⊗n using samples
from Q⊗n.

We can fully characterize the optimal L(t)/n as n → ∞:

Theorem 4 For any t > 0, let L∗
n(t) be the minimum Campbell cost for

target P⊗n and common randomness {Ui}i≥1 ∼ Q⊗n. Then, with

α = 1
1+t ,

lim
n→∞

L∗
n(t)

n
= D 1

α
(P ||Q).

This generalizes known results: for the minimum bits/sample rate R∗
n

for the n-dimensional product distributions,

lim
n→∞

R∗
n

n
= D(P ||Q).
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Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX
GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!

S. Hill September 18, 2025 18 / 22



Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX

GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!

S. Hill September 18, 2025 18 / 22



Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX
GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!

S. Hill September 18, 2025 18 / 22



Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX
GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!

S. Hill September 18, 2025 18 / 22



Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX
GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!

S. Hill September 18, 2025 18 / 22



Asymptotic Gaussian Examples

P = N (0, 1) and Q = N (1, 1) P = N (0, 1) and Q = N (5, 1)

Greedy rejection sampling does strictly worse in the exponential
cost regime, and the gap is often significant.
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Main Takeaways

Channel simulation is a theoretically and practically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

S. Hill September 18, 2025 20 / 22



Main Takeaways

Channel simulation is a theoretically and practically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

S. Hill September 18, 2025 20 / 22



Main Takeaways

Channel simulation is a theoretically and practically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

S. Hill September 18, 2025 20 / 22



Main Takeaways

Channel simulation is a theoretically and practically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

S. Hill September 18, 2025 20 / 22



Main Takeaways

Channel simulation is a theoretically and practically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

S. Hill September 18, 2025 20 / 22



Main Takeaways

Channel simulation is a theoretically and practically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

S. Hill September 18, 2025 20 / 22



References
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