Exact Channel Simulation under Exponential Cost

Spencer Hill

Queen's University, Canada

Allerton Conference

September 18, 2025

S. Hill September 18, 2025

Joint work with

Tamás Linder

Fady Alajaji

2/22

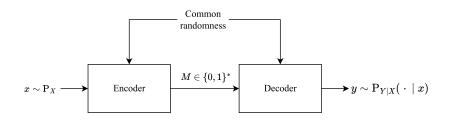
Queen's University

Outline

- What is channel simulation?
- 2 Interesting applications
- 3 Channel simulation algorithms and performance
- Exponential (Campbell) cost
- Our results

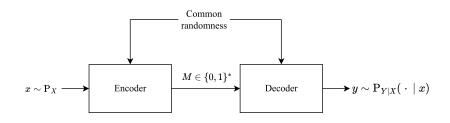
S. Hill September 18, 2025 3/22

Channel Simulation



S. Hill September 18, 2025

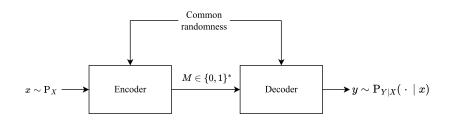
Channel Simulation



• Use noiseless channel to simulate noisy channel $X \to Y$

S. Hill September 18, 2025

Channel Simulation



- Use noiseless channel to simulate noisy channel $X \to Y$
- ullet When the goal is to efficiently communicate M, one can achieve

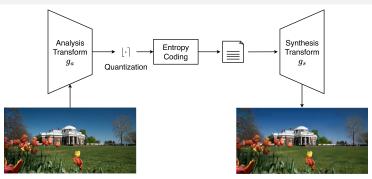
$$\mathbb{E}|M| \approx I(X;Y)$$
 bits

4/22

S. Hill September 18, 2025

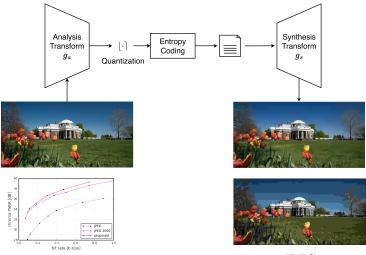
Why Care?

Neural Compression via Nonlinear Transform Coding



S. Hill September 18, 2025

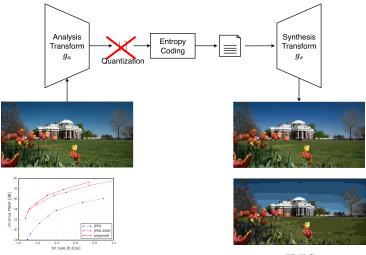
Neural Compression via Nonlinear Transform Coding



JPEG

Image credits Ballé et al. (2017).

Neural Compression via Nonlinear Transform Coding



JPEG

Image credits Ballé et al. (2017).

Neural Compression with Channel Simulation

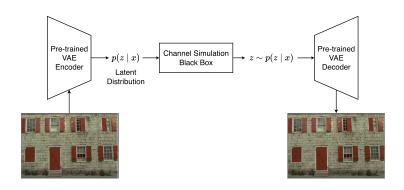
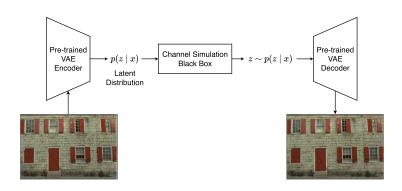


Image credits Flamich et al. (2020).

S. Hill September 18, 2025

Neural Compression with Channel Simulation



• Fully differentiable end-to-end system trained via the reparameterization trick!

Image credits Flamich et al. (2020).

• Lossy source coding

S. Hill September 18, 2025

- Lossy source coding
- Rate-distortion-perception tradeoff

S. Hill September 18, 2025 8/22

- Lossy source coding
- Rate-distortion-perception tradeoff
- Compression via implicit neural representation

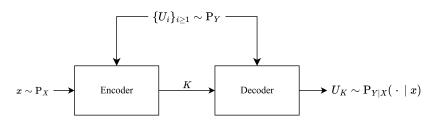
S. Hill September 18, 2025 8/22

- Lossy source coding
- Rate-distortion-perception tradeoff
- Compression via implicit neural representation
- Local differential privacy

S. Hill September 18, 2025 8/22

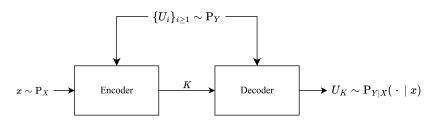
- Lossy source coding
- Rate-distortion-perception tradeoff
- Compression via implicit neural representation
- Local differential privacy
- Federated learning, ...

S. Hill September 18, 2025



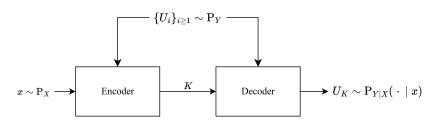
• Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$

S. Hill September 18, 2025



- Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$
- Transmit index K such that $U_K \sim P_{Y|X}$

S. Hill September 18, 2025

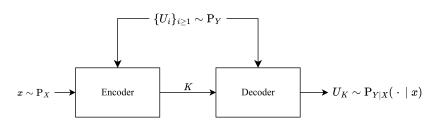


- Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$
- Transmit index K such that $U_K \sim P_{Y|X}$
- **Sampling:** for sampling from general *P* given access to sequence from *Q*, one can achieve

$$\mathbb{E}|M| \approx D(P||Q)$$
 bits

9/22

S. Hill September 18, 2025



- Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$
- Transmit index K such that $U_K \sim P_{Y|X}$
- **Sampling:** for sampling from general *P* given access to sequence from *Q*, one can achieve

$$\mathbb{E}|M| \approx D(P||Q)$$
 bits

• Sampling can simulate $X \to Y$ with communication cost

$$\mathbb{E}|M| \approx \mathbb{E}_X[D(P_{Y|X}(\cdot \mid X) \mid\mid P_Y)] = I(X;Y)$$
 bits

9/22

S. Hill September 18, 2025

• Greedy Rejection Sampling: Accept/reject each U_k sequentially, maximizing the acceptance probability each stage under the condition that the scheme is exact.

S. Hill September 18, 2025 10 / 22

• Greedy Rejection Sampling: Accept/reject each U_k sequentially, maximizing the acceptance probability each stage under the condition that the scheme is exact.

$$D(P||Q) \leq \mathbb{E}|M| \leq D(P||Q) + \log_2(D(P||Q) + 1) + 4$$

S. Hill September 18, 2025 10 / 22

• Greedy Rejection Sampling: Accept/reject each U_k sequentially, maximizing the acceptance probability each stage under the condition that the scheme is exact.

$$D(P||Q) \leq \mathbb{E}|M| \leq D(P||Q) + \log_2(D(P||Q) + 1) + 4$$

• Poisson Functional Representation: For $\{T_i\}_{i\geq 1}$ a rate-one Poisson process, choose $K = \arg\min_{i\geq 1} \frac{T_i}{\frac{\mathrm{d}P}{\mathrm{d}Q}(U_i)}$.

S. Hill September 18, 2025 10 / 22

• Greedy Rejection Sampling: Accept/reject each U_k sequentially, maximizing the acceptance probability each stage under the condition that the scheme is exact.

$$D(P||Q) \leq \mathbb{E}|M| \leq D(P||Q) + \log_2(D(P||Q) + 1) + 4$$

• Poisson Functional Representation: For $\{T_i\}_{i>1}$ a rate-one Poisson process, choose $K = \underset{i>1}{\arg\min} \frac{T_i}{\frac{dP}{dQ}(U_i)}$.

$$D(P||Q) \leq \mathbb{E}|M| \leq D(P||Q) + \log_2(D(P||Q) + 2) + 3$$

September 18, 2025 10/22

Our Setup: Exponential Cost and Rényi's entropy

• The previous results are for the expected message length (number of bits) $\mathbb{E}|M|$.

S. Hill September 18, 2025 11/22

Our Setup: Exponential Cost and Rényi's entropy

- The previous results are for the expected message length (number of bits) $\mathbb{E}|M|$.
- What are the fundamental limits of exact sampling and channel simulation under a cost which is *exponential* in the message lengths? Can these limits be (almost) achieved by existing algorithms?

S. Hill September 18, 2025 11/22

Campbell Cost L(t)

For uniquely decodable binary encoding $M \in \{0, 1\}^*$ of K having length |M| and for t > 0,

$$L(t) = \frac{1}{t} \log \left(\mathbb{E}[2^{t|M|}] \right).$$

S. Hill September 18, 2025 12/22

Campbell Cost L(t)

For uniquely decodable binary encoding $M \in \{0, 1\}^*$ of K having length |M| and for t > 0,

$$L(t) = \frac{1}{t} \log \left(\mathbb{E}[2^{t|M|}] \right).$$

Facts:

$$\lim_{t\to 0} L(t) = \mathbb{E}|M| \qquad \text{and} \qquad \lim_{t\to \infty} L(t) = \max_{\ell\in \mathbb{N} \ : \ \mathbb{P}(|M|=\ell)>0} \ell$$

S. Hill September 18, 2025 12 / 22

Campbell Cost L(t)

For uniquely decodable binary encoding $M \in \{0, 1\}^*$ of K having length |M| and for t > 0,

$$L(t) = \frac{1}{t} \log \left(\mathbb{E}[2^{t|M|}] \right).$$

Facts:

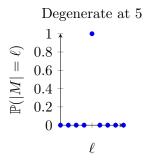
$$\lim_{t\to 0} L(t) = \mathbb{E}|M| \qquad \text{and} \qquad \lim_{t\to \infty} L(t) = \max_{\ell\in \mathbb{N} \ : \ \mathbb{P}(|M|=\ell)>0} \ell$$

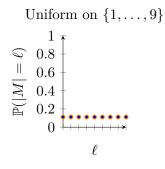
For a random variable K with Rényi entropy $H_{\alpha}(K)$ encoded optimally into message M, Campbell (1965) showed

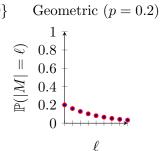
$$H_{\alpha}(K) \le L(t) < H_{\alpha}(K) + 1$$

with
$$\alpha = \frac{1}{1+t}$$
.

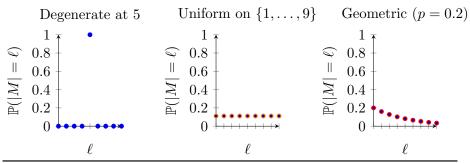
Why Care About L(t)?







Why Care About L(t)?



t	${\bf Degenerate}\ L(t)$	Uniform $L(t)$	Geometric $L(t)$
0	5	5	5
0.2	5	5.65	11.83
1	5	7.26	∞
5	5	8.56	∞
∞	5	9	∞

S. Hill

Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with $\alpha = \frac{1}{1+t}$,

$$L(t) \ge D_{\frac{1}{\alpha}}(P||Q) + \frac{\alpha}{1-\alpha}\log_2(\alpha) - 1. \tag{1}$$

S. Hill September 18, 2025 14/22

Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with $\alpha = \frac{1}{1+t}$,

$$L(t) \ge D_{\frac{1}{\alpha}}(P||Q) + \frac{\alpha}{1-\alpha}\log_2(\alpha) - 1. \tag{1}$$

14/22

As $t \to 0$, we recover the lower bound

$$\mathbb{E}|M| \ge D(P||Q) - \frac{1}{\ln(2)} - 1.$$

S. Hill September 18, 2025

Upper Bound via Poisson Functional Representation

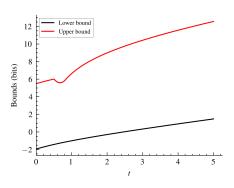
Theorem 2 For K chosen using the Poisson functional representation, for any $\epsilon > 0$ there exists a uniquely decodable encoding of K such that

$$L(t) \le (1+\epsilon)D_{\frac{1+\epsilon(1-\alpha)}{\alpha}}(P||Q) + c(\alpha,\epsilon), \tag{2}$$

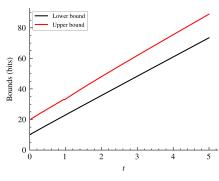
with $c(\alpha, \epsilon)$ a constant and $\alpha = \frac{1}{1+t}$.

S. Hill September 18, 2025 15/22

Gaussian Examples



$$P = \mathcal{N}(0,1)$$
 and $Q = \mathcal{N}(1,1)$



 $P = \mathcal{N}(0, 1)$ and $Q = \mathcal{N}(5, 1)$

16/22

S. Hill September 18, 2025

• We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.

- We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.
- We can fully characterize the optimal L(t)/n as $n \to \infty$:

- We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.
- We can fully characterize the optimal L(t)/n as $n \to \infty$:

Theorem 4 For any t > 0, let $L_n^*(t)$ be the minimum Campbell cost for target $P^{\otimes n}$ and common randomness $\{U_i\}_{i\geq 1} \sim Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

$$\lim_{n \to \infty} \frac{L_n^*(t)}{n} = D_{\frac{1}{\alpha}}(P||Q).$$

- We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.
- We can fully characterize the optimal L(t)/n as $n \to \infty$:

Theorem 4 For any t > 0, let $L_n^*(t)$ be the minimum Campbell cost for target $P^{\otimes n}$ and common randomness $\{U_i\}_{i\geq 1} \sim Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

$$\lim_{n\to\infty}\frac{L_n^*(t)}{n}=D_{\frac{1}{\alpha}}(P||Q).$$

This generalizes known results: for the *minimum bits/sample* rate R_n^* for the *n*-dimensional product distributions,

$$\lim_{n \to \infty} \frac{R_n^*}{n} = D(P||Q).$$

S. Hill Septembe

• A causal sampler accepts/rejects each candidate one-at-a-time (K is a stopping time w.r.t. $\{U_i\}_{i\geq 1}$).

- A causal sampler accepts/rejects each candidate one-at-a-time $(K \text{ is a stopping time w.r.t. } \{U_i\}_{i\geq 1}).$
- ullet Greedy rejection sampling $\sqrt{}$ Poisson functional representation ${\sf X}$

- A causal sampler accepts/rejects each candidate one-at-a-time $(K \text{ is a stopping time w.r.t. } \{U_i\}_{i\geq 1}).$
- ullet Greedy rejection sampling $\sqrt{}$ Poisson functional representation ${\sf X}$
- GRS and the PFR both achieve bits/sample rate D(P||Q) as $n \to \infty$.

- A causal sampler accepts/rejects each candidate one-at-a-time (K is a stopping time w.r.t. $\{U_i\}_{i\geq 1}$).
- Greedy rejection sampling ✓ Poisson functional representation X
- GRS and the PFR both achieve bits/sample rate D(P||Q) as $n \to \infty$.

Theorem 5 For any t > 0 let $L_n^*(t)$ be the minimum Campbell cost over *causal* samplers between $P^{\otimes n}$ and $Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

$$\liminf_{n \to \infty} \frac{L_n^*(t)}{n} \ge D_{\beta}(P||Q), \quad \text{where } \beta = \begin{cases} \frac{\alpha}{2\alpha - 1}, & \alpha \in (1/2, 1) \\ \infty, & \alpha \in (0, 1/2]. \end{cases}$$

- A causal sampler accepts/rejects each candidate one-at-a-time (K is a stopping time w.r.t. $\{U_i\}_{i\geq 1}$).
- Greedy rejection sampling ✓ Poisson functional representation X
- GRS and the PFR both achieve bits/sample rate D(P||Q) as $n \to \infty$.

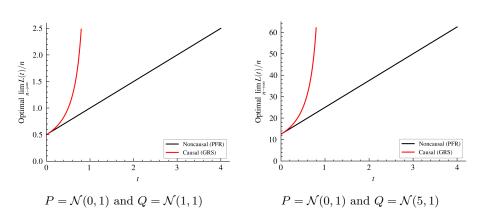
Theorem 5 For any t > 0 let $L_n^*(t)$ be the minimum Campbell cost over *causal* samplers between $P^{\otimes n}$ and $Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

$$\liminf_{n \to \infty} \frac{L_n^*(t)}{n} \ge D_{\beta}(P||Q), \quad \text{where } \beta = \begin{cases} \frac{\alpha}{2\alpha - 1}, & \alpha \in (1/2, 1) \\ \infty, & \alpha \in (0, 1/2]. \end{cases}$$

• $D_{\beta}(P||Q) > D_{\frac{1}{\alpha}}(P||Q)$ in general!!!

S. Hill September 18, 2025

Asymptotic Gaussian Examples



Greedy rejection sampling does **strictly worse** in the **exponential cost regime**, and the gap is often significant.

S. Hill September 18, 2025

19/22

• Channel simulation is a theoretically and practically interesting problem.

- Channel simulation is a theoretically and practically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.

- Channel simulation is a theoretically and practically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.
- The Campbell cost L(t) generalizes the expected message length and can be made more sensitive to the tails of the distribution.

- Channel simulation is a theoretically and practically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.
- The Campbell cost L(t) generalizes the expected message length and can be made more sensitive to the tails of the distribution.
- Under the Campbell cost, the Poisson functional representation is nearly optimal for exact sampling.

- Channel simulation is a theoretically and practically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.
- The Campbell cost L(t) generalizes the expected message length and can be made more sensitive to the tails of the distribution.
- Under the Campbell cost, the Poisson functional representation is nearly optimal for exact sampling.
- Causal samplers (such as greedy rejection sampling, greedy Poisson rejection sampling, etc.) do **strictly worse** than noncausal samplers in the asymptotic Campbell cost.

References

- J. Ballé, V. Laparra, and E. P. Simoncelli, "End-to-end optimized image compression," 5th International Conference on Learning Representations, 2017.
- L. L. Campbell, "A coding theorem and Rényi's entropy," Information and Control, vol. 8, no. 4, pp. 423–429, 1965.
- G. Flamich, M. Havasi, and J. M. Hernández-Lobato, "Compressing images by encoding their latent representations with relative entropy coding," Advances in Neural Information Processing Systems, vol. 33, pp. 16131–16141, 2020.
- P. Harsha, R. Jain, D. McAllester, and J. Radhakrishnan, "The communication complexity of correlation," *IEEE Transactions on Information Theory*, vol. 56, no. 1, pp. 438–449, 2010.
- E. Lei, H. Hassani, S. S. Bidokhti, "Neural estimation of the rate-distortion function with applications to operational source coding," *IEEE Journal on Selected Areas* in Information Theory, no. 4, pp. 674-686, 2023.
- D. Goc and G. Flamich, "On channel simulation with causal rejection samplers," in IEEE International Symposium on Information Theory (ISIT). IEEE, 2024, pp. 1682–1687.
- C. T. Li and A. El-Gamal, "Strong functional representation lemma and applications to coding theorems," *IEEE Transactions on Information Theory*, vol. 64, no. 4, pp. 2583–2592, 2018.

S. Hill September 18, 2025

21 / 22

References

- G. Flamich, S. M. Sriramu, and A. B. Wagner, "The redundancy of non-singular channel simulation," arXiv preprint arXiv:2501.14053, 2025.
- C. T. Li, Channel Simulation: Theory and Applications to Lossy Compression and Differential Privacy. Now Publishers, Inc., 2024, vol. 21, no. 6.
- G. Flamich, "Greedy Poisson rejection sampling," Advances in Neural Information Processing Systems, vol. 36, pp. 37089–37127, 2023.
- J. Liu and S. Verdú, "Rejection sampling and noncausal sampling under moment constraints," in *Proc. IEEE International Symposium on Information Theory* (ISIT), 2018, pp. 1565–1569.
- G. Flamich and L. Theis, "Adaptive greedy rejection sampling," in Proc. IEEE International Symposium on Information Theory (ISIT), 2023, pp. 454–459.
- C. T. Li and V. Anantharam, "A unified framework for one-shot achievability via the Poisson matching lemma," *IEEE Transactions on Information Theory*, vol. 67, no. 5, pp. 2624–2651, 2021.
- S. Hill, F. Alajaji, and T. Linder, "Communication complexity of exact sampling under Rényi information," arXiv preprint arXiv:2506.12219, 2025.