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Channel Simulation

Common
randomness

A Y

M e {0,1}*
z~Pxy —> Encoder > Decoder >y~ Py|X( . | 1’)

@ Use noiseless channel to simulate noisy channel X — Y

@ When the goal is to efficiently communicate M, one can achieve

E|M|~ I(X;Y) bits
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Neural Compression with Channel Simulation

Pre-trained
VAE
Decoder

Pre-trained
VAE
Encoder

Channel Simulation

p(z]2) — Black Box

— z~p(z| )

Latent
Distribution

o Fully differentiable end-to-end system trained via the
reparameterization trick!

Image credits Flamich et al. (2020).
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Other Applications

e Lossy source coding

o Rate-distortion-perception tradeoff

e Compression via implicit neural representation
e Local differential privacy

o Federated learning, ...
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Channel Simulation from Sampling

— {Ui}iz1 ~ Py

z ~Px —> Encoder Decoder —> Uk ~Pyix(- | 2)

Common randomness is i.i.d. sequence {U;}i>1 ~ Py

Transmit index K such that Ux ~ Py|x

Sampling: for sampling from general P given access to sequence
from @, one can achieve

E|M| ~ D(P||Q) bits
Sampling can simulate X — Y with communication cost
E[M| ~ Ex[D(Py x(- | X) || Py)] = I(X;Y) bits
September 18, 2025  9/22
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o Greedy Rejection Sampling: Accept/reject each Uy
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under the condition that the scheme is exact.
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e
Sampling Algorithms

o Greedy Rejection Sampling: Accept/reject each Uy
sequentially, maximizing the acceptance probability each stage
under the condition that the scheme is exact.

D(P[|Q) < E[M] < D(P[|Q) +logo(D(P[|Q) + 1) + 4

e Poisson Functional Representation For {T;},~, a rate-one

Poisson process, choose K = arg min

i>1 dP (U)

D(P[|Q) < E[M] < D(P[|Q) +logy(D(P[|Q) +2) + 3
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|
Our Setup: Exponential Cost and Rényi’s entropy

e The previous results are for the expected message length (number
of bits) E|M|.

e What are the fundamental limits of exact sampling and channel
simulation under a cost which is exponential in the message
lengths? Can these limits be (almost) achieved by existing
algorithms?
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For uniquely decodable binary encoding M € {0,1}* of K having
length |M| and for ¢ > 0,

L(t) = %log(E[T'M']).

Facts:
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Campbell Cost L(t)
For uniquely decodable binary encoding M € {0,1}* of K having
length |M| and for ¢ > 0,
_1 M|
L(t) = 7 log (E[z ]).

Facts:

lim L(t) = E|M| and lim L(t) = l
t—=0 t—o0

max
(eN : P(|M|=£)>0

For a random variable K with Rényi entropy H, (K ) encoded
optimally into message M, Campbell (1965) showed

Ha(K) < L(t) < Ho(K) + 1
with o = %th

September 18, 2025 1222
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Why Care About L(t)?
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Lower Bound

Theorem 1 For any sampling algorithm and ¢ > 0, with a = 1+rt’

(67

L(t) > D1 (P||Q) + —— logy(a) — 1. (1)

l—«o




Lower Bound

Theorem 1 For any sampling algorithm and ¢ > 0, with a = 1+rt’
@
L(t) 2 D1(Pl|Q) + ;— loga(a) — 1. (1)
As t — 0, we recover the lower bound
EIM| > D(PI|Q) ~ - — 1
- In(2)



Upper Bound via Poisson Functional Representation

Theorem 2 For K chosen using the Poisson functional representation,
for any € > 0 there exists a uniquely decodable encoding of K such that

L(t) < A+ ) D1 (PlIQ) + c(a ), (2)

with ¢(a, €) a constant and « = #t

September 18, 2025 1522




Gaussian Examples
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Thus we sample from the product distribution P®" using samples
from Q®".
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o We want to use the channel n-times with i.i.d. input Xi,...,X,.
Thus we sample from the product distribution P®" using samples
from Q®".

e We can fully characterize the optimal L(t)/n as n — oc:

Theorem 4 For any t > 0, let L% (t) be the minimum Campbell cost for
target P®" and common randomness {U;};5; ~ Q®". Then, with

1
Q=1
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n—oo N
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Q=
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Asymptotic Results
X

e We want to use the channel n-times with i.i.d. input Xi,
Thus we sample from the product distribution P®" using samples

from Q®".
e We can fully characterize the optimal L(t)/n as n — oc:

Theorem 4 For any t > 0, let L% (t) be the minimum Campbell cost for
target P®" and common randomness {U;};5; ~ Q®". Then, with

1
Q=1
L* (¢t
lim "():D
n—oo N

This generalizes known results: for the minimum bits/sample rate R},

(PllQ).

Q=

for the n-dimensional product distributions,
Ry,
D(P[|Q).

lim — =
n—oo N
17 /22
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Causal vs. Noncausal Sampling

e A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {U;}i>1).

o Greedy rejection sampling v~ Poisson functional representation X

e GRS and the PFR both achieve bits/sample rate D(P||Q) as
n — oo.

Theorem 5 For any t > 0 let L} (¢) be the minimum Campbell cost

over causal samplers between P®" and Q®". Then, with a = 1+rt’
Ly (t —a 1/2.1

Jim inf Z2() > Dy(P||Q), where g={ 21 “€ (1/2,1)

n—oo N 0, a € (0,1/2].
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Causal vs. Noncausal Sampling

e A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {U;}i>1).

o Greedy rejection sampling v~ Poisson functional representation X

e GRS and the PFR both achieve bits/sample rate D(P||Q) as
n — oo.

Theorem 5 For any t > 0 let L} (¢) be the minimum Campbell cost

over causal samplers between P®" and Q®". Then, with o = 1+rt’

" 2 1/2,1
hmlnfL ® > Ds(P||Q), where g = ¢ 2071 a€(1/2,1)
n—00 0, o€ (0’ 1/2]

e Dg(P||Q) > D1(P||Q) in general!!!

1
«
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Asymptotic Gaussian Examples
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Greedy rejection sampling does strictly worse in the exponential
cost regime, and the gap is often significant.
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Main Takeaways

e Channel simulation is a theoretically and practically interesting
problem.

e Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

e The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

e Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

e Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

September 18, 2025 20/ 22
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