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Exact Sampling

When the goal is to efficiently communicate K, one can achieve

H(K) ≈ D(P∥Q) bits

Shannon: K can be losslessly encoded at rate R such that

H(K) ≤ R < H(K) + 1
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Channel Simulation from Exact Sampling

X,Y random variables, choose P = PY |X( · | x) and Q = PY .

On input x ∼ PX , sampling from P simulates the channel X → Y .

Can simulate the channel with communication cost close to

H(K) ≈ EX [D(PY |X( · | X) || PY )] = I(X;Y ) bits
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Why Care?
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Lossy Source Coding

The encoder encodes the block (X1, . . . , Xn)

Decoder reconstructs (Y1, . . . , Yn)

Distortion: D = 1
n

∑n
i=1 E

[
d(Xi, Yi)]

Rate: R = 1
nE|M | (expected message length)

Asymptotically (n → ∞) optimal performance

R(D) = min
PY |X : E[d(X,Y )]≤D

I(X;Y ).
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Realization with Channel Simulation

R(D) = min
PY |X : E[d(X,Y )]≤D

I(X;Y ).

Recent work on neural-estimation of the rate-distortion function and
R(D)-achieving conditional distribution Lei et al. (2023).

Channel simulation at cost I(X;Y ) =⇒ one-shot code achieving R(D)
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Other Applications

Neural compression via nonlinear transform coding

Compression via implicit neural representation

Rate-distortion-perception tradeoff

Local differential privacy

Federated learning, . . .
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Neural Compression via Nonlinear Transform Coding

JPEG

Image credits Ballé et al. (2017).
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Neural Compression with Channel Simulation

Fully differentiable end-to-end system!

Channel simulation =⇒ Relative entropy coding

Image credits Flamich et al. (2020).
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Exact Sampling

Key Questions:

How can we choose K such that UK ∼ P exactly?

How close can we get to D(P ||Q)?
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

0 0.5 1

dP

dQ

Rejection sampling

0 0.5 1

dP

dQ

Greedy rejection sampling

P = N (0.5, 0.05)|[0,1], Q = Uniform([0, 1]), γ = 0.55.
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.
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U1 = 0.85

dP

dQ

Rejection sampling

0 0.5 1

U1 = 0.85

dP

dQ

Greedy rejection sampling

P(Accept) = γ dP
dQ(U1) = 0.275 P(Accept) =

(
dP
dQ(U1)− 0

)
/1 = 0.5
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.
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U1U2 = 0.3
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dQ

Rejection sampling

0 0.5 1

U1U2 = 0.3

dP

dQ

Greedy rejection sampling

P(Accept) = γ dP
dQ(U2) = 0.67 P(Accept) = 1

0.255

(
dP
dQ(U2)− 1

)
= 0.89
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

0 0.5 1

U1U2 U3 = 0.62

dP

dQ

Rejection sampling

0 0.5 1

U1U2

dP

dQ

Greedy rejection sampling

P(Accept) = γ dP
dQ(U2) = 0.87
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

0 0.5 1

U1U2 U1U2 U3

dP

dQ

Rejection sampling

0 0.5 1

U1U2

dP

dQ

Greedy rejection sampling

GRS: D(P ||Q) ≤ E[|M |] ≤ D(P ||Q) + log2(D(P ||Q) + 1) + 4
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Recent Tighter Bounds

Recently, Goc and Flamich (2024) showed a tight bound on the
expected message length:

D(P ||Q) ≤ DCS(P ||Q) ≤ E[|M |] ≤ DCS(P ||Q) + log2(e+ 1) + 1

for DCS(P ||Q) the channel simulation divergence.

The upper bound on E[|M |] is achieved using greedy rejection
sampling.
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Poisson Functional Representation

For {Ti}i≥1 a rate-one Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
,

Li and El-Gamal (2018).
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Poisson Functional Representation

For {Ti}i≥1 a rate-one Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
,

Li and El-Gamal (2018).
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T

D(P ||Q) ≤ E[|M |] ≤ D(P ||Q) + log2(D(P ||Q) + 2) + 3
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Our Setup: Exponential Cost and Rényi’s entropy

The previous results are for the expected message length (number
of bits) E[|M |].

What are the fundamental limits of exact sampling under a cost
which is exponential in the message lengths? Can these limits be
(almost) achieved by existing algorithms?
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Campbell Cost L(t)

For uniquely decodable binary encoding M ∈ {0, 1}∗ of K having
length |M | and for t > 0,

L(t) =
1

t
log

(
E[2t|M |]

)
.

Facts:

lim
t→0

L(t) = E[|M |] and lim
t→∞

L(t) = max
ℓ∈N : P(|M |=ℓ)>0

ℓ

For a random variable K with Rényi entropy Hα(K) encoded
optimally into message M , Campbell (1965) showed

Hα(K) ≤ L(t) < Hα(K) + 1

with α = 1
1+t .
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Why Care About L(t)?
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t Degenerate L(t) Uniform L(t) Geometric L(t)

0 5 5 5
0.2 5 5.65 11.83
1 5 7.26 ∞
5 5 8.56 ∞
∞ 5 9 ∞
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Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with α = 1
1+t ,

L(t) ≥ D 1
α
(P ||Q) +

α

1− α
log2(α)− 1. (LB)

As t → 0, we recover the lower bound

E[|M |] ≥ D(P ||Q)− 1

ln(2)
− 1.
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Upper Bounds via Poisson Functional Representation

Theorem 2 For K chosen using the Poisson functional representation,
for any ϵ > 0 there exists a uniquely decodable encoding of K such that

L(t) ≤ (1 + ϵ)D 1+ϵ(1−α)
α

(P ||Q) + c(α, ϵ), (UB1)

with c(α, ϵ) a constant and α = 1
1+t .
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Upper Bounds via Poisson Functional Representation

Theorem 3 Encoding K (generated by the PFR) using the Elias
omega code gives, for any 0 < t < 1/2 and ϵ ≤ 1

2t − 1,

L(t) ≤ D 2−α
α

(P ||Q) + (1 + ϵ) log2(D(P ||Q) + 1) + cϵ. (UB2)

Recovers the bound

E[|M |] ≤ D(P ||Q) + (1 + ϵ) log2(D(P ||Q) + 1) + cϵ

of Harsha et al. (2010) as t → 0.
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Proof Techniques

For E[|M |] and L(t) the lower bounds D(P∥Q) resp. D 1
α
(P ||Q) are

simple to prove.

The upper bound(s) on E[|M |] are derived through sharply
bounding E[ log2K ].

The upper bounds on L(t) are derived (more or less) by bounding
E[Kt].
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Gaussian Examples

P = N (0, 1) and Q = N (1, 1) P = N (0, 1) and Q = N (5, 1)
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Asymptotic Results

We want to use the channel n-times with i.i.d. input X1, . . . , Xn.
Thus we sample from the product distribution P⊗n using samples
from Q⊗n.

We can now fully characterize the optimal L(t)/n as n → ∞:

Theorem 4 For any t > 0, let L∗
n(t) be the minimum Campbell cost for

target P⊗n and common randomness {Ui}i≥1 ∼ Q⊗n. Then, with

α = 1
1+t ,

lim
n→∞

L∗
n(t)

n
= D 1

α
(P ||Q).

This generalizes known results: for the minimum bits/sample rate R∗
n

for the n-dimensional product distributions,

lim
n→∞

R∗
n

n
= D(P ||Q).
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Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX
GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!

Greedy rejection sampling does strictly worse in the
exponential cost regime, and the gap is often significant.
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Main Takeaways

Exact sampling is one (highly general) way to perform channel
simulation at a near-optimal encoding cost, and has wide
applications.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

The Poisson functional representation is nearly optimal for exact
sampling (typically within 5-10 bits) for the Campbell cost.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.
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under Rényi information,” arXiv preprint arXiv:2506.12219, 2025.

T. Linder August 14, 2025 32 / 32


	References
	References

