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Motivation

Biological invasions (i.e., invasive species) cause extreme ecological
and economic damage worldwide

Effective control of a invasion relies on knowing where the
infestation is, and detection methods are imperfect and expensive

Existing literature! focuses on the detection of a species’
introduction and/or optimal management to slow the spread

We aim to delimit the frontier of an invasion, i.e., determine the
spacial extent of the invasion

We mathematically formulate and solve the problem of allocating
survey effort to delimit the invasion frontier under uncertainty,
with general applications to delimiting surveys of biological
invasions

!Bityiiktahtakin, I. Esra, and Robert G. Haight. ” A review of operations research

models in invasive species management: state of the art, challenges, and future

directions.” Annals of Operations Research 271.2 (2018): 357-403.
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N survey regions across a landscape, time horizon T
(Unobservable) invasion frontier X (¢t) € {0,...,N}, X(0) ~ 7
The frontier moves with Poisson rate 6;

Furthest detection point at time ¢ is D(t) € {0,...,N}, D(0) =0
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Problem Formulation

D(t) =0 X(t)=1
® O ()

uy(t) us(t) un(t)
N survey regions across a landscape, time horizon T
(Unobservable) invasion frontier X (¢t) € {0,...,N}, X(0) ~ 7
The frontier moves with Poisson rate 6;
Furthest detection point at time ¢ is D(t) € {0,...,N}, D(0) =0
e Survey effort u(t) = [ui(t),...,un(t)] under budget constraint
Ju(®)[, < B
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Problem Formulation
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u1(t) us(t) un(t)
N survey regions across a landscape, time horizon T
(Unobservable) invasion frontier X (¢t) € {0,...,N}, X(0) ~ 7
The frontier moves with Poisson rate 6;
Furthest detection point at time ¢ is D(t) € {0,...,N}, D(0) =0
Survey effort u(t) = [ui(t),...,un(t)] under budget constraint
Ju(®)[, < B
Detections occur with Poisson rate A\ju;(t) if the region is infested
Objective: minimize the area of undetected infestation,

T
E, [ ST X () - D(t)dt
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POMDP Approach

Standard approach:

@ Define a belief-MDP using the belief of the frontier state
conditioned on the past detections

@ Solve the belief-MDP to find the optimal survey effort u*
Problem: The state space of this belief-MDP will be huge

e For B =5 and N = 6, the size of the state space is ~ 10!, even
after constraining u;(t) € {0, 1,2,3,4,5}!

Computing (even approximately) the optimal policy is infeasible
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the next detection.
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If we can specify the cost-to-go of detecting the infestation, the problem
can be reformulated and solved as a simpler optimal control problem.

Theorem

Our POMDP can be written as an equivalent optimal control problem,

and the survey effort u* which solves the optimal control problem also
minimizes the cost of the corresponding POMDP.
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Optimal Control Formulation

v The belief on the frontier location evolves deterministically before
the next detection.

If we can specify the cost-to-go of detecting the infestation, the problem
can be reformulated and solved as a simpler optimal control problem.

Theorem

Our POMDP can be written as an equivalent optimal control problem,
and the survey effort u* which solves the optimal control problem also
minimizes the cost of the corresponding POMDP.

Question: How do we specify the cost-to-go of a detection conditional
on the detection time, region, and belief?
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Theorem

We can specify the exact cost-to-go of a detection and solve the optimal
control problem using Pontryagin’s maximum principle.
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Two-Region Problem (N = 2)

Theorem

We can specify the exact cost-to-go of a detection and solve the optimal
control problem using Pontryagin’s mazximum principle.

Theoretical insights into the optimal survey policy:

o Impact of budget: as budget

. : Survey AB =20
increases, the optimal suvery only next

policy concentrates on the closest region

region to the current furthest M

detection. = Change

between regions
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Two-Region Problem (N = 2)

Theorem

We can specify the exact cost-to-go of a detection and solve the optimal
control problem using Pontryagin’s mazximum principle.

Theoretical insights into the optimal survey policy:

o Impact of budget: as budget Survey AB = 20
increases, the optimal suvery only next
policy concentrates on the closest region
region to the current furthest M
’<

detection. Change

e Surveying near vs. far regions: if between regions
we believe the frontier is close, we
should survey close.

0
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BESSSSS—
N-Region Problem

o We estimate cost-to-go of a detection at site i as a linear function
of the distance to the current furthest detection point.
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N-Region Problem
o We estimate cost-to-go of a detection at site ¢ as a linear function
of the distance to the current furthest detection point.

e For an entire invasion, after each detection we compute the
approximate survey policy and apply it until the next detection.

Survey A
Region —— Furthest Detection

5 = —— Survey Region

Detection!
4 —
Detection!
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Detection!
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Time
Same policy | Same policy l Same policy | Same policy
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Case Study: Spotted Lanternfly
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(a) The spotted lanternfly (b) Infestation region as of July 2025'

e N =10 to divide Ontario into 50km regions; T' = 15 years

o Uniform prior 7 on infestation frontier, m; = P(X(0) = i) =
e From historical data, spread rate § = 0.8

@ Visual survey detection rate is A = 0.36

o Budget level B is the total number of surveys available

Tmage credit Cornell Integrated Pest Management
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Results (Catch Me If You Can!)
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Figure: Comparison of the frontier and furthest detection (averaged over 100
simulated invasions). Shaded area represents the 15/85th percentile runs.

Octoe ST E0ss G



Single Run Results
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Single Run Results
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Main Takeaways

@ Delimiting the frontier of a biological invasion is an important
problem which can be studied using techniques from OR

e Our model is applicable to a variety of biological invasions and is
simple in the input parameters

e Estimating the cost-to-go of detection allows the intractable
POMDP to be solved efficiently as an optimal control problem

@ The resulting optimal control problem can be analytically studied,
leading to counterintuitive managerial insights
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