Catch Me if You Can: An Optimal Pest Survey Strategy to Delimit Biological Invasions

Spencer Hill^{1,2}, Jue Wang¹, and Denys Yemshanov²

¹Queen's University, Kingston, Canada

² Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre

2025 INFORMS Annual Meeting

October 27, 2025

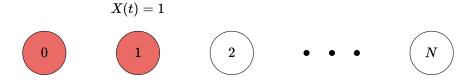
• Biological invasions (i.e., invasive species) cause extreme ecological and economic damage worldwide

- Biological invasions (i.e., invasive species) cause extreme ecological and economic damage worldwide
- Effective control of a invasion relies on knowing *where* the infestation is, and detection methods are imperfect and expensive

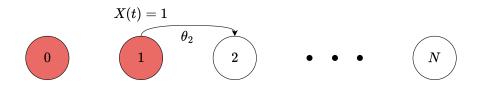
- Biological invasions (i.e., invasive species) cause extreme ecological and economic damage worldwide
- Effective control of a invasion relies on knowing *where* the infestation is, and detection methods are imperfect and expensive
- Existing literature¹ focuses on the detection of a species' introduction and/or optimal management to slow the spread

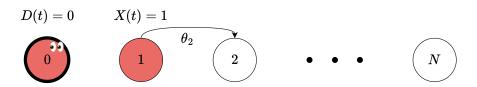
¹Büyüktahtakın, I. Esra, and Robert G. Haight. "A review of operations research models in invasive species management: state of the art, challenges, and future directions." Annals of Operations Research 271.2 (2018): 357-403.

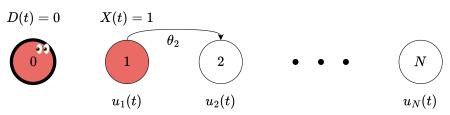
- Biological invasions (i.e., invasive species) cause extreme ecological and economic damage worldwide
- Effective control of a invasion relies on knowing *where* the infestation is, and detection methods are imperfect and expensive
- Existing literature¹ focuses on the detection of a species' introduction and/or optimal management to slow the spread
- We aim to delimit the frontier of an invasion, i.e., determine the spacial extent of the invasion

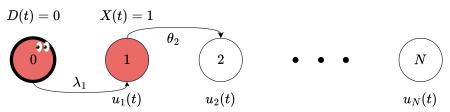

¹Büyüktahtakın, I. Esra, and Robert G. Haight. "A review of operations research models in invasive species management: state of the art, challenges, and future directions." Annals of Operations Research 271.2 (2018): 357-403.

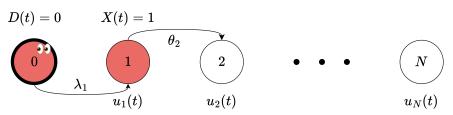
- Biological invasions (i.e., invasive species) cause extreme ecological and economic damage worldwide
- Effective control of a invasion relies on knowing *where* the infestation is, and detection methods are imperfect and expensive
- Existing literature¹ focuses on the detection of a species' introduction and/or optimal management to slow the spread
- We aim to delimit the frontier of an invasion, i.e., determine the spacial extent of the invasion
- We mathematically formulate and solve the problem of allocating survey effort to delimit the invasion frontier under uncertainty, with general applications to delimiting surveys of biological invasions


¹Büyüktahtakın, I. Esra, and Robert G. Haight. "A review of operations research models in invasive species management: state of the art, challenges, and future directions." Annals of Operations Research 271.2 (2018): 357-403.


 \bullet N survey regions across a landscape, time horizon T


- N survey regions across a landscape, time horizon T
- (Unobservable) invasion frontier $X(t) \in \{0, ..., N\}, X(0) \sim \pi$


- ullet N survey regions across a landscape, time horizon T
- (Unobservable) invasion frontier $X(t) \in \{0, ..., N\}, X(0) \sim \pi$
- The frontier moves with Poisson rate θ_i


- N survey regions across a landscape, time horizon T
- (Unobservable) invasion frontier $X(t) \in \{0, ..., N\}, X(0) \sim \pi$
- The frontier moves with Poisson rate θ_i
- Furthest detection point at time t is $D(t) \in \{0, ..., N\}, D(0) = 0$

- \bullet N survey regions across a landscape, time horizon T
- (Unobservable) invasion frontier $X(t) \in \{0, ..., N\}, X(0) \sim \pi$
- The frontier moves with Poisson rate θ_i
- Furthest detection point at time t is $D(t) \in \{0, ..., N\}, D(0) = 0$
- Survey effort $u(t) = [u_1(t), \dots, u_N(t)]$ under budget constraint $||u(t)||_1 \leq B$

- \bullet N survey regions across a landscape, time horizon T
- (Unobservable) invasion frontier $X(t) \in \{0, ..., N\}, X(0) \sim \pi$
- The frontier moves with Poisson rate θ_i
- Furthest detection point at time t is $D(t) \in \{0, ..., N\}, D(0) = 0$
- Survey effort $u(t) = [u_1(t), \dots, u_N(t)]$ under budget constraint $||u(t)||_1 \leq B$
- Detections occur with Poisson rate $\lambda_i u_i(t)$ if the region is infested

- \bullet N survey regions across a landscape, time horizon T
- (Unobservable) invasion frontier $X(t) \in \{0, ..., N\}, X(0) \sim \pi$
- The frontier moves with Poisson rate θ_i
- Furthest detection point at time t is $D(t) \in \{0, ..., N\}, D(0) = 0$
- Survey effort $u(t) = [u_1(t), \dots, u_N(t)]$ under budget constraint $||u(t)||_1 \leq B$
- Detections occur with Poisson rate $\lambda_i u_i(t)$ if the region is infested
- Objective: minimize the area of undetected infestation, $\mathbb{E}_{\pi} \left[\int_{t=0}^{T} X(t) D(t) \mathrm{d}t \right]$

Spencer Hill October 27, 2025

3/11

Standard approach:

• Define a belief-MDP using the belief of the frontier state conditioned on the past detections

Standard approach:

- Define a belief-MDP using the belief of the frontier state conditioned on the past detections
- Solve the belief-MDP to find the optimal survey effort u^*

Standard approach:

- Define a belief-MDP using the belief of the frontier state conditioned on the past detections
- Solve the belief-MDP to find the optimal survey effort u^*

Problem: The state space of this belief-MDP will be huge

Standard approach:

- Define a belief-MDP using the belief of the frontier state conditioned on the past detections
- Solve the belief-MDP to find the optimal survey effort u^*

Problem: The state space of this belief-MDP will be huge

• For B=5 and N=6, the size of the state space is $\approx 10^{11}$, even after constraining $u_i(t) \in \{0,1,2,3,4,5\}!$

Standard approach:

- Define a belief-MDP using the belief of the frontier state conditioned on the past detections
- Solve the belief-MDP to find the optimal survey effort u^*

Problem: The state space of this belief-MDP will be huge

• For B=5 and N=6, the size of the state space is $\approx 10^{11}$, even after constraining $u_i(t) \in \{0,1,2,3,4,5\}!$

Computing (even approximately) the optimal policy is infeasible

The belief on the frontier location evolves deterministically before the next detection.

The belief on the frontier location evolves deterministically before the next detection.

If we can specify the *cost-to-go* of detecting the infestation, the problem can be reformulated and solved as a simpler optimal control problem.

The belief on the frontier location evolves deterministically before the next detection.

If we can specify the *cost-to-go* of detecting the infestation, the problem can be reformulated and solved as a simpler optimal control problem.

Theorem

Our POMDP can be written as an equivalent optimal control problem, and the survey effort u^* which solves the optimal control problem also minimizes the cost of the corresponding POMDP.

The belief on the frontier location evolves deterministically before the next detection.

If we can specify the *cost-to-go* of detecting the infestation, the problem can be reformulated and solved as a simpler optimal control problem.

Theorem

Our POMDP can be written as an equivalent optimal control problem, and the survey effort u* which solves the optimal control problem also minimizes the cost of the corresponding POMDP.

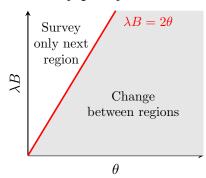
Question: How do we specify the cost-to-go of a detection conditional on the detection time, region, and belief?

Theorem

We can specify the exact cost-to-go of a detection and solve the optimal control problem using Pontryagin's maximum principle.

Theorem

We can specify the exact cost-to-go of a detection and solve the optimal control problem using Pontryagin's maximum principle.

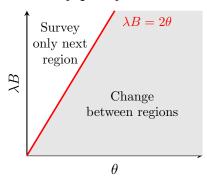

Theoretical insights into the optimal survey policy:

Theorem

We can specify the exact cost-to-go of a detection and solve the optimal control problem using Pontryagin's maximum principle.

Theoretical insights into the optimal survey policy:

• Impact of budget: as budget increases, the optimal suvery policy concentrates on the *closest* region to the current furthest detection.

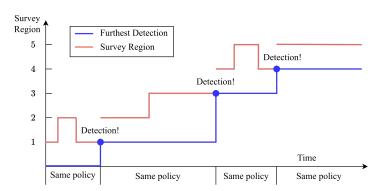


Theorem

We can specify the exact cost-to-go of a detection and solve the optimal control problem using Pontryagin's maximum principle.

Theoretical insights into the optimal survey policy:

- Impact of budget: as budget increases, the optimal suvery policy concentrates on the *closest* region to the current furthest detection.
- Surveying near vs. far regions: if we believe the frontier is close, we should survey close.



N-Region Problem

• We estimate cost-to-go of a detection at site i as a linear function of the distance to the current furthest detection point.

N-Region Problem

- We estimate cost-to-go of a detection at site i as a linear function of the distance to the current furthest detection point.
- For an entire invasion, after each detection we compute the approximate survey policy and apply it until the next detection.

Case Study: Spotted Lanternfly

(a) The spotted lanternfly

(b) Infestation region as of July 2025¹

8/11

Spencer Hill October 27, 2025

¹Image credit Cornell Integrated Pest Management

Case Study: Spotted Lanternfly

(a) The spotted lanternfly

(b) Infestation region as of July 2025¹

8/11

- N = 10 to divide Ontario into 50km regions; T = 15 years
- Uniform prior π on infestation frontier, $\pi_i = \mathbb{P}(X(0) = i) = \frac{1}{N}$
- From historical data, spread rate $\theta = 0.8$
- Visual survey detection rate is $\lambda = 0.36$
- Budget level B is the total number of surveys available

Spencer Hill October 27, 2025

¹Image credit Cornell Integrated Pest Management

Results (Catch Me If You Can!)

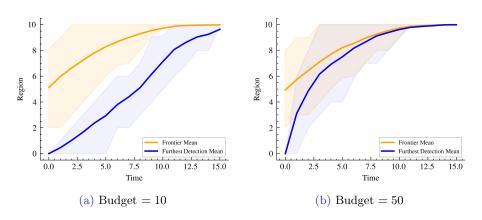
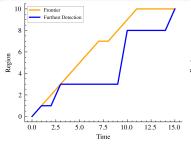
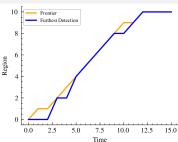
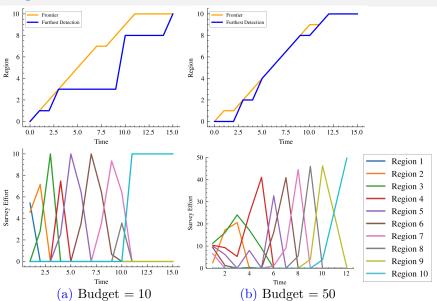




Figure: Comparison of the frontier and furthest detection (averaged over 100 simulated invasions). Shaded area represents the 15/85th percentile runs.

Single Run Results



(a) Budget = 10

(b) Budget = 50

Single Run Results

Spencer Hill October 27, 2025

10 / 11

• Delimiting the frontier of a biological invasion is an important problem which can be studied using techniques from OR

- Delimiting the frontier of a biological invasion is an important problem which can be studied using techniques from OR
- Our model is applicable to a variety of biological invasions and is simple in the input parameters

- Delimiting the frontier of a biological invasion is an important problem which can be studied using techniques from OR
- Our model is applicable to a variety of biological invasions and is simple in the input parameters
- Estimating the *cost-to-go* of detection allows the intractable POMDP to be solved efficiently as an optimal control problem

- Delimiting the frontier of a biological invasion is an important problem which can be studied using techniques from OR
- Our model is applicable to a variety of biological invasions and is simple in the input parameters
- Estimating the *cost-to-go* of detection allows the intractable POMDP to be solved efficiently as an optimal control problem
- The resulting optimal control problem can be analytically studied, leading to counterintuitive managerial insights