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OBJECTIVE

• Potential Energy Surfaces (PES) are required to calculate most chemical observables (i.e., 

reaction rates, etc.)

• Constructing a PES generally requires interpolating between known potential energy 

points in a multi-dimensional space

• The objective is to be able to compute a vibrational spectrum with errors approximately       

1 cm-1, a challenging task for analytic methods

• A popular machine learning method to accomplish this is Gaussian Process Regression 

(GPR)
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GAUSSIAN PROCESS REGRESSION (GPR)
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Matrix K describes how correlated each 

pair of  data points are

Optimized 𝑙𝑖 informs on 

relevance of  the i-th 

variable
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PROS AND CONS OF GPR1

Pros Cons

• Demonstrated sufficiently low error 

with relatively few ab initio points

• Simple to use and train, with few 

hyperparameters trained by 

maximizing the log marginal 

likelihood

• Generality of method across multiple 

functions

• Computational complexity scales 

𝑂 𝑛3  with the number of  training 

examples n

• Space complexity scales 𝑂 𝑛2  with 

n

• Time and space complexity limit 

GPR to training problems with         

n < 104
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LOCAL GAUSSIAN PROCESS REGRESSION

We propose Local Gaussian Process Regression (LGPR), which leverages the correlation of 

the covariance function to reduce the computational and space complexity. 
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For points with low correlation, the 

covariance will be close to zero 
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We can approximate 𝑲 as the 𝑚-by-𝑚 matrix ෡𝑲, leading to the modified equation

𝑦 𝒙 = 𝑲∗ ෢𝑲−𝟏𝒕

𝑲∗ = 𝑘 𝒙, 𝒙 1 𝑘 𝒙, 𝒙 2 … 𝑘 𝒙, 𝒙 𝒎 ,  𝑡(𝑚)

The m entries are determined 

by those with covariance above 

a threshold value
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THEORETICAL BENEFITS

• LGPR has time complexity 𝑂(𝑛 + 𝑚3) and space complexity 𝑂 𝑛 + 𝑚2 , which is 

caused by the need to compute covariance between a test point and each training point

• By constraining 𝑚 ≪ 𝑛, LGPR permits an arbitrarily large number of  training points 

without dramatically increasing the computation time

• LGPR is embarrassingly parallel, decreasing the time required to make large numbers of 

predictions
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LGPR IMPLEMENTATION AND METHOD

• LGPR was implemented using Python and the sklearn library. 

• Euclidean distances between the test point and training points are computed and used to 

determine the 𝑚 prior points

• It was found that optimizing the log-marginal likelihood of the hyperparameters for each 

prediction point 𝒙′ was intractable for large numbers of  predictions

• Hyperparameters were optimized over a subset of  the data and averaged across the 

entire dataset. This did not significantly increase the prediction errors

• A minimum bound on 𝑚 was found to improve the prediction accuracy for regions with 

sparse training point distribution
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H2CO

• The potential for was computed for H2CO by constructing a set of  120,000 points using a 

pseudo-random Sobol sequence and accepting the point 𝒙 if

𝑉𝑚𝑎𝑥 − 𝑉 𝑥 + Δ

𝑉𝑚𝑎𝑥 + Δ
 > 𝑏

𝑉 𝑥  is the potential function, Δ =

500 cm−1, 𝑉𝑚𝑎𝑥 = 17 000 𝑐𝑚−1, and 

𝑏 is a random number in [0,1]

• 5000 training points were used for the full GPR and LGPR

• Vibrational spectra were computed with the Space-Fixed Gaussian Basis method of  

Manzhos and Carrington2

2. J. Chem. Phys. 145, 224110 (2016).
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H2CO RESULTS

Average m value Potential 

RMSE

Spectrum Mean 

Absolute Frequency

Spectrum 

RMSE

Full GPR 8.37 cm-1 0.869 1.31

951 8.72 cm-1 0.844 1.35

651 9.26 cm-1 0.886 1.38

466 10.94 cm-1 0.925 1.36

• LGPR performed comparably to the full GPR, and more importantly had Spectrum Mean 

Absolute Frequency and Root Mean Square Errors (RMSE) of approximately 1 cm-1
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6D AND 9D MORSE OPERATORS

• The potential was computed for 6 and 9-dimensional coupled morse operators, which for 

k dimensions predicts the potential of  point 𝑄 according to, 

𝑉 𝑄 = ෍

𝑖=1

k

𝐷𝑒 1 − 𝑒−𝑎 𝑞𝑖−𝑟𝑒 +
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1 − 𝑒−𝑎 𝑞𝑖−𝑟𝑒 1 − 𝑒−𝑎 𝑞𝑗−𝑟𝑒  

where 𝐷𝑒 has the value 37,255 cm-1, a is 1.8677 inverse Angstrom, and 𝑟𝑒 is 1.275 Angstrom

• A pseudo-random Sobol sequence was also used to construct the training point sets, 

which had 20 000 and 100 000 training points respectively for the 6 and 9-dimensional 

operators
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6D AND 9D MORSE OPERATORS RESULTS

Full GPR RMSE: 1.37 cm-1

LGPR RMSE (900 < 𝑚 < 1000): : 2.04 cm-1

6D Morse Operator

Full GPR (20 000 training points) RMSE: 6.49 cm-1

LGPR RMSE (2000 < 𝑚 < 2100): 7.10 cm-1

9D Morse Operator
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CONCLUSIONS

• We proposed LGPR, a local GPR method to reduce the computational and space 

complexity and permit larger numbers of training points

• LGPR accomplishes this by computing the covariance matrix for a subset of  the data with 

high correlation to the test point

• LGPR was shown to be similarly accurate to GPR over H2CO and 6 and 9-dimensional 

morse operators while reducing the required computation

• LGPR has the potential to be expanded to higher-dimensional computations that are 

currently intractable for conventional GPRs
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