LOCAL GAUSSIAN PROCESS REGRESSION

SPENCER HILL, QUEEN'S UNIVERSITY

spencer.hill@queensu.ca

With support from Dr. Tucker Carrington Jr. and Dr. Sergei Manzhos

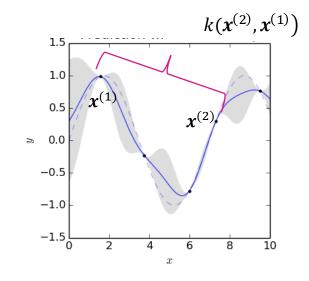
OBJECTIVE

- Potential Energy Surfaces (PES) are required to calculate most chemical observables (i.e., reaction rates, etc.)
- Constructing a PES generally requires interpolating between known potential energy points in a multi-dimensional space
- The objective is to be able to compute a vibrational spectrum with errors approximately 1 cm⁻¹, a challenging task for analytic methods
- A popular machine learning method to accomplish this is Gaussian Process Regression (GPR)

GAUSSIAN PROCESS REGRESSION (GPR)

What is the expected value of f at x given the set $\{t^{(n)}, x^{(n)}\}$?

Matrix K describes how correlated each pair of data points are


$$y(x) = K^*K^{-1}t$$

$$K = \begin{pmatrix} k(x^{(1)}, x^{(1)}) + \delta & k(x^{(1)}, x^{(2)}) & \dots & k(x^{(1)}, x^{(M)}) \\ k(x^{(2)}, x^{(1)}) & k(x^{(2)}, x^{(2)}) + \delta & k(x^{(2)}, x^{(M)}) \\ \vdots & \ddots & \vdots \\ k(x^{(M)}, x^{(1)}) & k(x^{(M)}, x^{(2)}) & \dots & k(x^{(M)}, x^{(M)}) + \delta \end{pmatrix}$$

$$\stackrel{0.5}{\sim} 0.0$$

$$-0.5$$

$$\mathbf{K}^* = (k(\mathbf{x}, \mathbf{x}^{(1)}) \quad k(\mathbf{x}, \mathbf{x}^{(2)}) \quad \dots \quad k(\mathbf{x}, \mathbf{x}^{(M)})) \quad \mathbf{K}^{**} = k(\mathbf{x}, \mathbf{x})$$

$$(RBF): k(x, x') = \sigma^2 exp\left(-\frac{|x - x'|^2}{2l^2}\right) \to \prod_{i=1}^{D} exp\left(-\frac{|x_i - x_i'|^2}{2l_i^2}\right)$$

hyperparameters

Optimized l_i informs on relevance of the i-th variable

PROS AND CONS OF GPR¹

Pros	Cons	
 Demonstrated sufficiently low error with relatively few <i>ab initio</i> points Simple to use and train, with few hyperparameters trained by maximizing the log marginal likelihood Generality of method across multiple functions 	 Computational complexity scales O(n³) with the number of training examples n Space complexity scales O(n²) with n Time and space complexity limit GPR to training problems with n < 10⁴ 	

LOCAL GAUSSIAN PROCESS REGRESSION

We propose Local Gaussian Process Regression (LGPR), which leverages the correlation of the covariance function to reduce the computational and space complexity.

$$K = \begin{pmatrix} k(x^{(1)}, x^{(1)}) + \delta & k(x^{(1)}, x^{(2)}) \\ k(x^{(2)}, x^{(1)}) & k(x^{(2)}, x^{(2)}) + \delta \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 + \delta \end{pmatrix}$$
For points with low correlation, the covariance will be close to zero

For points with low correlation, the

We can approximate **K** as the m-by-m matrix \hat{K} , leading to the modified equation

$$y(x) = K^* \widehat{K^{-1}} t$$

$$y(x) = K^*K^{-1}t$$
 by tho $K^* = (k(x, x^{(1)}) \quad k(x, x^{(2)}) \quad ... \quad k(x, x^{(m)})), \ t^{(m)}$

The *m* entries are determined by those with covariance above a threshold value

THEORETICAL BENEFITS

- LGPR has time complexity $O(n + m^3)$ and space complexity $O(n + m^2)$, which is caused by the need to compute covariance between a test point and each training point
- By constraining $m \ll n$, LGPR permits an arbitrarily large number of training points without dramatically increasing the computation time
- LGPR is embarrassingly parallel, decreasing the time required to make large numbers of predictions

LGPR IMPLEMENTATION AND METHOD

- LGPR was implemented using Python and the *sklearn* library.
- Euclidean distances between the test point and training points are computed and used to determine the m prior points
- It was found that optimizing the log-marginal likelihood of the hyperparameters for each prediction point x' was intractable for large numbers of predictions
 - Hyperparameters were optimized over a subset of the data and averaged across the entire dataset. This did not significantly increase the prediction errors
- A minimum bound on m was found to improve the prediction accuracy for regions with sparse training point distribution

H_2CO

• The potential for was computed for H_2CO by constructing a set of 120,000 points using a pseudo-random Sobol sequence and accepting the point \boldsymbol{x} if

$$\frac{V_{max} - V(x) + \Delta}{V_{max} + \Delta} > b$$

$$V(x) \text{ is the potential function, } \Delta = 500 \text{ cm}^{-1}, V_{max} = 17000 \text{ cm}^{-1}, \text{ and}$$

$$b \text{ is a random number in [0,1]}$$

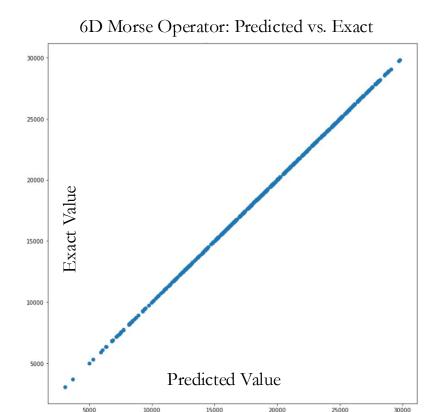
- 5000 training points were used for the full GPR and LGPR
- Vibrational spectra were computed with the Space-Fixed Gaussian Basis method of Manzhos and Carrington²

H₂CO RESULTS

Average <i>m</i> value	Potential	Spectrum Mean	Spectrum
	RMSE	Absolute Frequency	RMSE
Full GPR	8.37 cm ⁻¹	0.869	1.31
951	8.72 cm ⁻¹	0.844	1.35
651	9.26 cm ⁻¹	0.886	1.38
466	10.94 cm ⁻¹	0.925	1.36

• LGPR performed comparably to the full GPR, and more importantly had Spectrum Mean Absolute Frequency and Root Mean Square Errors (RMSE) of approximately 1 cm⁻¹

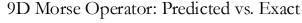
6D AND 9D MORSE OPERATORS

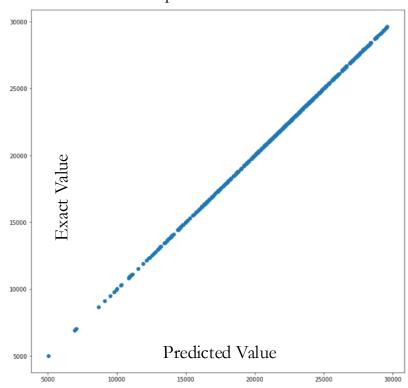

• The potential was computed for 6 and 9-dimensional coupled morse operators, which for *k* dimensions predicts the potential of point *Q* according to,

$$V(Q) = \sum_{i=1}^{k} D_e \left(1 - e^{-a(q_i - r_e)} \right) + \frac{D_e}{100} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \left(1 - e^{-a(q_i - r_e)} \right) \left(1 - e^{-a(q_j - r_e)} \right)$$

where D_e has the value 37,255 cm⁻¹, a is 1.8677 inverse Angstrom, and r_e is 1.275 Angstrom

A pseudo-random Sobol sequence was also used to construct the training point sets,
 which had 20 000 and 100 000 training points respectively for the 6 and 9-dimensional operators


6D AND 9D MORSE OPERATORS RESULTS



6D Morse Operator

Full GPR RMSE: 1.37 cm⁻¹

LGPR RMSE (900 < m < 1000): : 2.04 cm⁻¹

9D Morse Operator

Full GPR (20 000 training points) RMSE: 6.49 cm⁻¹

LGPR RMSE (2000 < m < 2100): 7.10 cm⁻¹

CONCLUSIONS

- We proposed LGPR, a local GPR method to reduce the computational and space complexity and permit larger numbers of training points
- LGPR accomplishes this by computing the covariance matrix for a subset of the data with high correlation to the test point
- LGPR was shown to be similarly accurate to GPR over H₂CO and 6 and 9-dimensional morse operators while reducing the required computation
- LGPR has the potential to be expanded to higher-dimensional computations that are currently intractable for conventional GPRs