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J OBJECTIVE

* Potential Energy Surfaces (PES) are required to calculate most chemical observables (i.e.,
reaction rates, etc.)

* Constructing a PES generally requires interpolating between known potential energy
points in a multi-dimensional space

* The objective is to be able to compute a vibrational spectrum with errors approximately
1 cm!] a challenging task for analytic methods

* A popular machine learning method to accomplish this 1s Gaussian Process Regression

(GPR)



. GAUSSIAN PROCESS REGRESSION (GPR)
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. PROS AND CONS OF GPR!

Pros Cons

Demonstrated sufficiently low error
with relatively few ab initio points
Simple to use and train, with few
hyperparameters trained by
maximizing the log marginal
likelthood

Generality of method across multiple

functions

Computational complexity scales
0(n3) with the number of training
examples 7

Space complexity scales 0(n?) with
n

Time and space complexity limit
GPR to training problems with

n<10*

1. J. Chem. Phys. 148, 241702 (2018)



. LOCAL GAUSSIAN PROCESS REGRESSION

We propose Local Gaussian Process Regression (LGPR), which leverages the correlation of
the covariance function to reduce the computational and space complexity.
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We can approximate K as the m-by-m matrix K, leading to the modified equation

The m entries are determined
y(x) = K*K-1t by those with covariance above

a threshold value

K= (k(x,x®) k(x,x®) .. k(x,xM)), t0W



i THEORETICAL BENEFITS

¢ LGPR has time complexity O(n + m3) and space complexity O(n + m?), which is
caused by the need to compute covariance between a test point and each training point

* By constraining m < n, LGPR permits an arbitrarily large number of training points
without dramatically increasing the computation time

* LGPR is embarrassingly parallel, decreasing the time required to make large numbers of

predictions



. LGPR IMPLEMENTATION AND METHOD

* LGPR was implemented using Python and the sk/arn library.

* FEuclidean distances between the test point and training points are computed and used to
determine the m prior points

* It was found that optimizing the log-marginal likelthood of the hyperparameters for each
prediction point X" was intractable for large numbers of predictions

* Hyperparameters were optimized over a subset of the data and averaged across the
entire dataset. This did not significantly increase the prediction errors
* A minimum bound on m was found to improve the prediction accuracy for regions with

sparse training point distribution



] H.CO

* The potential for was computed for H,CO by constructing a set of 120,000 points using a

pseudo-random Sobol sequence and accepting the point X if

V(x) is the potential function, A =
Vax — V(x) + A

Vimax +4

500 cm™, V0 = 17 000 cm ™1

and

bl

b is a random number in [0,1]

* 5000 training points were used for the full GPR and LGPR

* Vibrational spectra were computed with the Space-Fixed Gaussian Basis method of

Manzhos and Carrington?

2.]. Chem. Phys. 145, 224110 (2016).



B H,CO RESULTS
RMSE Absolute Frequenc RMSE
Full GPR 8.37 cm™! 0.869 1.31
951 8.72 cm™! 0.844 1.35

651 9.26 cm’! 0.886 1.38

466 10.94 cm! 0.925 1.36

LGPR performed comparably to the full GPR, and more importantly had Spectrum Mean

Absolute Frequency and Root Mean Square Errors (RMSE) of approximately 1 cm!



@l 6D AND 9D MORSE OPERATORS

* The potential was computed for 6 and 9-dimensional coupled morse operators, which for

k£ dimensions predicts the potential of point @ according to,

V(Q) = ZD (1— e~

1002 Z (1 - emeam)) (1 - emelarme))

=1 j=i+1

where D, has the value 37,255 cm™, 2 is 1.8677 inverse Angstrom, and 7, is 1.275 Angstrom

* A pseudo-random Sobol sequence was also used to construct the training point sets,
which had 20 000 and 100 000 training points respectively for the 6 and 9-dimensional

operators
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. 6D AND 9D MORSE OPERATORS RESULTS
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6D Morse Operator: Predicted vs. Exact
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6D Morse Operator

Full GPR RMSE: 1.37 cm™!

LGPR RMSE (900 < m < 1000): : 2.04 cm"!

20000

15000

10000

5000

9D Morse Operator: Predicted vs. Exact

Exact Value

/

Predicted Value

T
5000

T T T T
10000 15000 20000 25000 30000

9D Morse Operator

Full GPR (20 000 training points) RMSE: 6.49 cm!

LGPR RMSE (2000 < m < 2100): 7.10 cm’!
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. CONCLUSIONS

* We proposed LGPR, a local GPR method to reduce the computational and space
complexity and permit larger numbers of training points

* LGPR accomplishes this by computing the covariance matrix for a subset of the data with
high correlation to the test point

* LGPR was shown to be similarly accurate to GPR over H,CO and 6 and 9-dimensional
morse operators while reducing the required computation

* LGPR has the potential to be expanded to higher-dimensional computations that are

currently intractable for conventional GPRs
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