
Data Compression via Nonlinear Transform Coding

using Artificial Neural Networks

MTHE 493 Thesis

Spencer Hill, Wyllie Schenkman, Jordan Curnew, Mark Benhamu

April 10, 2023



Abstract

This thesis presents an implementation of nonlinear transform coding (NTC) that uses artificial neural net-

works (ANNs) for lossy data compression. In today’s digital age, it is not difficult to motivate the need for

efficient data compression. There is no end to society’s reliance on multi-media information within every

industry, including healthcare. This project focuses in particular on the compression of computerized to-

mography (CT) scans and examines the social, economic, and environmental impacts that improvements in

their compression would have.

Today’s standard image compression techniques commonly rely on linear transform coding, a method that

leverages orthogonal transformations to decorrelate and compress a source. NTC offers a more sophisticated

approach but has been historically limited by the intractability of determining appropriate nonlinear trans-

forms in high dimensions. However, recent advancements in computer hardware and the emergence of ANNs

have provided a method to implement general nonlinear transforms, motivating significant work on the topic

of NTC.

We provide a mathematical formulation of an NTC system, which comprises nonlinear analysis and synthesis

transforms implemented using ANNs. A differentiable cost function is derived, necessitating approximations

of the source entropy model and a proxy for scalar quantization. This cost function can be optimized using

stochastic gradient descent, and by incorporating Lagrangian optimization can be used for rate-distortion

traversal. An iterative design process is employed to enhance the model’s compression capabilities, incorpo-

rating techniques such as image tiling, regularization techniques and more sophisticated distortion measures

and activation functions, namely the structural similarity index measure and generative divisive normaliza-

tion, respectively.

The NTC model is tested using increasingly complex data sources, including a one-dimensional Lapla-

cian distribution, images of handwritten digits, and finally the target application of CT scans. For image

compression, the analysis and synthesis transforms are implemented using convolutional neural networks.

The success of the project is measured by the achieved rate-distortion function and perceptual quality of

the reconstructed images. A comparison of the model with the JPEG standard is presented, and although

JPEG outperforms NTC in this application we give an outline of future work that would allow this system

to surpass current industry standards.

In writing this thesis, we extend a special thank you to the Queen’s School of Computing for generously

providing us with access to their GPU cluster. Without these resources, our model implementation and

testing would have been severely limited.

ii



Contents

1 Problem Definition 1

2 Engineering Impact 2

2.1 Standards and Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Stakeholders and Triple Bottom Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.3 Healthcare System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Economic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Background 6

3.1 Data Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Rate Distortion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.2 Scalar Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.3 Linear Transform Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.4 Nonlinear Transform Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Solution 13

4.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Tools and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Solution Iterations 18

5.1 Image Tiling for Computation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 SSIM Distortion Measure for Improved Human Perception . . . . . . . . . . . . . . . . . . . . 19

5.3 Regularization Techniques to Address Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 GDN Activation Function for Improved Image Processing . . . . . . . . . . . . . . . . . . . . 21

5.5 Contrast Intensity Rescaling for Enhanced Image Quality . . . . . . . . . . . . . . . . . . . . 22

5.6 Final Model Design and Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Testing and Results 24

6.1 One-Dimensional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Handwritten Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3 CT Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



7 Future Work 29

7.1 Improve Entropy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Introduce Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.3 Improvements to Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Conclusion 31

9 Appendix 32

9.1 Nonlinear Transform Coding Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.2 Laplacian Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.3 MNIST Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.4 CT Scan Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

List of Tables

1 Recommended Compression Ratios for CT by Anatomical Region [3] . . . . . . . . . . . . . . 2

2 Storage Cost & Access Times for Varying Compression Ratios . . . . . . . . . . . . . . . . . . 5

3 Summary of the model design iterations and their tradeoffs. . . . . . . . . . . . . . . . . . . . 23

List of Figures

1 Brainstorm of Stakeholder selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Block diagram of a linear transform coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Block diagram of JPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Comparison of LTC (left) and NTC (right) for a banana-shaped distribution [1]. Lines indicate

quantization bins, with dots the codebook vectors . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Example neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Example CNN architecture [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Nonlinear transform coding system outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Estimated entropy rates of images during model training . . . . . . . . . . . . . . . . . . . . . 15

9 An example of a CT scan image from the DeepLesion dataset . . . . . . . . . . . . . . . . . . 17

10 A 512x512 CT scan partioned into 64 × 64 tiles. . . . . . . . . . . . . . . . . . . . . . . . . . 18

11 A blocking effect is visible in the reconstructed image after stitching together the tiles. . . . . 19

12 Comparison of SSIM and MSE for image distortion [33]. . . . . . . . . . . . . . . . . . . . . . 20

13 Plots of the Rate and SSIM during model training before and after implementing regularization

techniques to address overfitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

14 A reconstructed image with low contrast is rescaled to more closely resemble the original image. 22

15 Finalized end-to-end image compression workflow. . . . . . . . . . . . . . . . . . . . . . . . . 23

16 Histograms of the Laplacian distribution and model reconstructions . . . . . . . . . . . . . . 24

17 Analysis and synthesis transformations visualized in two dimensions. Dotted lines indicate

the codebook vectors, while solid lines indicate the quantization region boundaries. . . . . . . 25

18 MNIST Rate Distortion Graph of ReLU and GDN activation functions . . . . . . . . . . . . . 26

19 Compressed and original MNIST images from test set . . . . . . . . . . . . . . . . . . . . . . 26

20 Rate distortion graphs for the compression of CT scans . . . . . . . . . . . . . . . . . . . . . 27

iv



21 Original (middle) and reconstructed (left: JPEG, right: NTC) images at 0.77 bpp . . . . . . 28

v



1 Problem Definition

As the world continues to rely increasingly on multi-media communication, the need for efficient compression,

storage, and transmission of data is higher than ever. Although transform coding has been the universal

compression method for the past decades, a potential shift from linear to nonlinear transform codes has

been a topic of interest in recent years. The emergence of artificial neural networks (ANNs) and massively

parallel computational resources has produced new strategies for solving the previously intractable problem

of determining optimal nonlinear transforms in high dimensions. With these developments, nonlinear trans-

form coding (NTC) has the potential to leverage the theoretical advantages in learning non-Gaussian source

distributions [1]. Still, practical questions remain surrounding nonlinear transform coding, most notably

how to perform stochastic gradient optimization of an ANN-based system and whether it can compare to

industry standards such as JPEG.

The problem being addressed in this thesis is the development of an NTC model for the compression of

computerized tomography (CT) scan images used to detect cancer lesions. Specifically, we aim to implement

ANN analysis and synthesis transforms and design a custom, differentiable cost function to jointly optimize

compression rate and distortion. The primary challenge, as in most data compression, is achieving practi-

cally useful compression rates with distortion sufficiently low for our application of CT scans. This requires a

thorough analysis of relevant stakeholders to understand all facets of the problem and the relevant constraints.

The design of the neural network-based compression system must align with stakeholder needs, includ-

ing patients, practitioners, and the healthcare industry. Patients require extremely accurate compression,

as any misdiagnoses resulting from the distortion of a reconstructed CT scan can have negative health ef-

fects. Practitioners need fast access to high-quality images from any clinic location, including remote areas

lacking in internet bandwidth. The healthcare industry has requirements for data storage and transmission

and compliance with regulatory standards, as well as a significant environmental and economic interest in

compressing CT scans. The needs of these stakeholders and how they impact the project direction are

further detailed in Section 2.2. Further, the deployment of any system must consider computational power

and speed. The ability to reconstruct images must be immediately available to patients and practitioners

through most laptops and smartphones, limiting the complexity of neural networks used.

The successful implementation of this project will contribute to the development of more efficient and effec-

tive compression techniques for medical imaging, particularly in the detection of cancer lesions. It will also

provide insights into the application of artificial neural networks in image compression and the challenges

associated with balancing compression rate and distortion.

1



2 Engineering Impact

In this section, we identify relevant stakeholders and conduct a triple-bottom-line analysis to understand the

social, economic, and environmental impact that this project has. Regulatory concerns are also addressed,

as well as a thorough economic analysis.

2.1 Standards and Regulation

The CT scans used to train the models in this project were obtained from the National Institute of Health

(NIH). While sensitive patient data was used, all personally identifiable information was removed by NIH

to protect the privacy of the individuals whose CT scans were used [2]. By using this public data set, the

team did not infringe on the privacy rights of any study participants.

We note again the damning negative impact of over-compression on patients and practitioners. Although

no legal standards regarding the compression of CT scans were found, papers such as the Pan-Canadian

Evaluation of Irreversible Compression Ratios for Development of National Guidelines give recommended

compression ratios for specific anatomical regions [3]. The recommended compression ratios from that paper

are summarized in Table 1. These compression ratios were produced from a qualitative analysis of images

compressed using current industry standards. It is therefore important to consider them in the context of

the distortion that compression produces, which can be translated to our system to determine similar guide-

lines for compression rates. As system deployment is outside the scope of the project, it is not necessary

to establish or follow compression standards. Nevertheless, we continue to emphasize the negative effects of

over-compression and these constraints’ influence on project direction.

Table 1: Recommended Compression Ratios for CT by Anatomical Region [3]

Anatomical Region CT
Angio 16–24
Body JPEG 10–15; J2K 10
Breast 8–12
Chest 10–15
MSK JPEG 20–30; J2K 20
Neuro 16–24

Pediatrics 10–15

2.2 Stakeholders and Triple Bottom Line

An in-depth stakeholder analysis is a critical part of a successful engineering design project. For our applica-

tion of compressing CT scans, we identified important stakeholders and ensured the needs of each are met.

These stakeholders’ needs were then used to inform the constraints, goals, and design choices specific to our

project. To identify the stakeholders of the project, the group first created a brainstorm map, as seen in

Figure 1, to understand the organizations and individuals affected by the project. For organizations, there

was only one major stakeholder identified, that being hospitals and, more broadly, the healthcare system.

The individuals category was divided into two subcategories: patients who are having CT scans performed

and health practitioners taking or using the CT scans. Thus, the stakeholder analysis was performed on the

following key stakeholders: the healthcare system, patients, and practitioners.

2



Figure 1: Brainstorm of Stakeholder selection.

The stakeholder analysis was conducted by doing further background research on each stakeholder and their

involvement in our project, then performing the triple-bottom-line analysis. This analysis will be used to

understand the social, environmental, and economic impacts of the project.

2.2.1 Patients

Two studies from the World Journal of Radiology and the Journal of Thoracic Imaging found that low-

quality CT images resulted in higher rates of misdiagnoses [4]. Along with this, close to 30% of CT scans

taken in the United States are classified as low-quality [5]. Due to this, one of our success metrics for our

project is to maintain image quality, with a goal to reduce the percentage of low-quality images upon the

implementation of our solution. This is crucial to the first key stakeholder, patients, as a misdiagnosis as a

result of an over-compressed CT scan could have significant negative impacts, including delayed or incorrect

treatment. Delayed treatment can lead to tumour growth and even prove fatal to a patient [6]. Additionally,

an incorrect treatment could lead to unnecessary surgery, which in the United States can have financial

repercussions or even fatal injuries. In 2019, between 80,000 and 160,000 misdiagnoses led to medical-related

injury [7]. For this reason, ensuring image quality can reduce the amount of these misdiagnoses each year,

improving patient safety.

Social Impact: The social impact on the patients is the reduction in misdiagnoses as a result of an over-

compressed CT scan. This is beneficial as fewer patients will be mistreated or have delayed treatment,

leading to fewer medical-related injuries or fatalities [6].

Economic Impact: The economic impact on patients arises from false negative diagnoses, which can

severely complicate the necessary treatment. Further, unclear scans may lead to unnecessary additional

testing. For patients without health insurance, both scenarios represent significant added costs.

Environmental Impact: No notable environmental impacts have been identified for the patients.

2.2.2 Practitioners

In rural parts of Canada, less than 15% of emergency departments (ED) have access to CT scanners [8]. For

this reason, practitioners assess CT scans sent to them by radiologists. This can create a bottleneck in the

3



process if CT scan image sizes are impractically large for practitioners to open or view. Due to this, one

of our success metrics for our project is to reduce the image size, with a goal to increase the availability of

CT images for rural practitioners upon solution implementation. For remote practitioners, long wait times

for the download and upload of the images cause inefficiencies in their work. Along with this, maintaining a

high-quality CT image scan is beneficial to practitioners, as a low-quality image may necessitate resending

or even retesting, further delaying their ability to perform their job [9].

Social Impact: The social impact on the practitioners is increased accessibility of high-quality CT scans

for rural office workers. This improvement would mean practitioners are able to expand treatment to patients

who need immediate scan results in rural locations.

Economic Impact: The economic impact on practitioners also comes from increased access to high-

quality CT scans for rural office workers. This is economically beneficial as practitioners will be able to treat

more patients, increasing their pay. This is especially beneficial in the United States, where healthcare is

privatized.

Environmental Impact: No notable environmental impacts have been identified for the practitioners.

2.2.3 Healthcare System

In the United States alone 80 million CT scans are taken every year, and medical records are required by law

to be retained for 10 years [10][11]. For this reason, more than 800 million CT scans are stored at a given

time. Modern CT machines take upwards of 640 slices per CT scan, with each slice being approximately

0.5 MB [12][13]. This results in 320 MB of data being produced for a CT scan. In total, there are at least

256,000 terabytes of CT images are stored at any given time. Due to this, one of the success metrics for our

project is reducing image size, specifically aiming to decrease the cost of storing CT images for hospitals.

This is extremely important for the healthcare system, as more funding can be allocated to patient care and

other important resources [14].

Social Impact: The social impact on the healthcare system is the reallocation of funding to patient care

and more medical resources. With the cost of CT scan storage being reduced (as the compression size is

decreased), then upon implementation of the project, social resources for hospitals can be improved.

Economic Impact: The economic impact on the healthcare system comes in the form of savings from

CT scan storage. Developed further in Section 2.3, the cost of total yearly CT scan storage would decrease

significantly with an increased compression ratio. For this reason, the healthcare system will economically

benefit upon implementation of the project.

Environmental Impact: The environmental impact on the healthcare system comes from the power

saving per CT scan. Reducing the size of CT scans will also reduce the healthcare system’s power required for

the processing, transmission, and storage of these scans. This will have a positive impact on the environment

by lowering the carbon footprint of CT scans.

4



2.3 Economic Analysis

As seen in the stakeholder analysis, CT scans play a crucial role in medical imaging. However, the large file

sizes pose significant challenges to the storage and transfer of medical images, resulting in high storage costs

and slow transfer times. Effective compression of these images while maintaining high levels of quality and

diagnostic accuracy would be economically lucrative.

This analysis assesses the economic impact of implementing the developed model to compress CT scan

images in the healthcare system. The team analyzed the potential cost savings for storing and accessing

patient records at varying compression rates. As can be seen in the results, Section 6, the developed model

achieves different compression rates with associated reconstruction distortions. Table 2 shows the total

storage required in TB, total yearly storage cost in USD, and rural area download time per CT-scan for

compression ratios of 1:1, 2:1, 5:1, and 10:1.

Table 2: Storage Cost & Access Times for Varying Compression Ratios

Compression Storage Required Yearly Storage Cost Rural Access Times per

Ratio (TB) (USD) CT scan (min)

1:1 250,000 30,000,000 7.23

2:1 125,000 15,000,000 3.62

5:1 50,000 6,000,000 1.45

10:1 25,000 3,000,000 0.72

The following assumptions were made for calculating yearly storage costs and upload/download times for

hospitals in rural areas:

• 80 million CT scans are conducted in the USA each year [10].

• The storage cost is $0.01 per month per GB [15].

• The file size of a full CT scan is 320MB [12][13].

• The yearly number of scans is equal, assuming equivalent turnover and entry rates of stored data for

consistent year-on-year comparisons.

• CT Scans must be stored for 10 years [11].

• The connection speed for hospitals in rural areas is 5.9 Mbps [16].

The analysis demonstrates that effective compression of CT scans can reduce storage costs by millions. In

terms of access times, saving practitioners three to six or more minutes per access significantly improves op-

erational efficiency. It remains crucial to consider the impact of image quality on practitioners and patients.

As mentioned in Section 2.2.3, poor image quality has been found to decrease diagnostic accuracy. Misdi-

agnoses can incur economic costs from additional treatment, but the impact of fatalities from misdiagnoses

cannot be measured economically. As such, it is essential to carefully balance the benefits of compression

against the potential risks of misdiagnoses due to poor image quality.

5



3 Background

The following sections describe background information necessary to understand the project. A review of

relevant data compression topics are discussed, followed by an overview of neural networks and a literature

review of related work.

3.1 Data Compression

Data compression broadly aims to reduce the size of a data source for either transmission or storage. In

particular, by removing the statistical redundancies of the data source, it can be represented in a lower

number of bits while maintaining either all or most of the key information. Data compression can be

categorized into two types: lossless and lossy compression. Lossless data compression uses an invertible

transform that removes statistical redundancy such that the reconstructed data X̂ is identical to X. The

rate of lossless data compression is lower bounded by the entropy of a source, which for discrete random

variables is given in bits by

H(X) = −
∑
x∈X

P (x) log2 P (x). (3.1)

for its probability distribution P . Conversely, lossy data compression aims to minimize the distortion between

X and X̂ without the requirement of exact reconstruction. Lossy compression can achieve lower compression

rates, with the tradeoff that the distortion between X and X̂ increases inversely proportional to the rate.

Thus, the key question of lossy data compression is the minimum number of bits required to represent the

reproduction X̂ under the requirement that the distortion between X and X̂ be less than D [17].

3.1.1 Rate Distortion Theory

For a source X = (x1, . . . , xn) and reconstruction X̂ = (x̂1, . . . , x̂n), we define

d(X, X̂) =

n∑
i=1

d(xi, x̂i) (3.2)

and call d : X × X̂ → R the distortion between X and X̂ [17]. We generally require that d(x, y) ≥ 0

∀x ∈ X , y ∈ X̂ [17]. For a lossy code, we define the rate R of the code as

R = number of bits required to represent one source symbol.

Rate-distortion theory gives the lower bound for the rate at a maximum distortion D as

R(D) = min
p(x̂|x) :Ed(X,X̂)≤D

{I(X, X̂)} (3.3)

with p(x̂|x) the conditional probability mass function of X̂ given X and I(X, X̂) the mutual information

between X and X̂ [17]. This makes explicit the tradeoff between rate and distortion, as R(D) is a nonin-

creasing, convex function, meaning that decreasing the rate necessitates increasing the maximum allowable

distortion.

6



3.1.2 Scalar Quantization

Lossy compression is usually achieved using quantization, which aims to discretize continuous values to a

finite range. Specifically, an N-point scaler quantizer is the mapping Q : R→ C, where C is the codebook

C = {y1, y2, ..., yN} ⊂ R (3.4)

such that y1 < y2 < ... < yN [18]. We denote the quantizer cells of the Q as

Ri = {x ⊂ R : Q(x) = yi} (3.5)

and note that the set of all Ri form a partition of R [18]. An N-level scalar quantizer is evaluated based on

two primary performance metrics, a distortion D(Q) and rate R(Q) defined as

D(Q) = Ed(X,Q(X)) (3.6)

R(Q) = log2(N) (3.7)

As described above, d(x, y) is a distortion measure reflecting the loss induced by reproducing x as y. In

particular, for the common squared distortion measure d(x, y) = (x− y)2, you can write

Ed(X,Q(X)) =

N∑
i=1

E[(xi −Q(xi))
2]

=

N∑
i=1

∫
Ri

(xi − yi)
2f(x)dx [18]. (3.8)

For quantizing training samples X = X1, . . . , XM drawn from an unknown distribution, this expected

distortion becomes

Ed(X,Q(X)) =
1

M

M∑
i=1

(xi −Q(xi))
2 (3.9)

which is the popular mean-squared error (MSE) distortion [18]. We refer to an N-level scalar quantizer as

optimal if it has minimal distortion, that is Q∗ is optimal if

D(Q∗) = min
Q∈QN

D(Q) (3.10)

for QN the set of all N-level scalar quantizers [18]. In practice, an optimal quantizer is often designed using

the Lloyd-Max Algorithm, an iterative procedure that aims to satisfy the Nearest Neighbour and Centroid

Conditions, which are necessary but not sufficient conditions for optimality. This project is not concerned

with the optimality of the quantizers used, instead aiming to design transforms that fit the data to a quantizer

that is fixed a priori.

7



3.1.3 Linear Transform Coding

For a data sample X of size 1×N , linear transform coding (LTC) converts X according to Figure 2, where

Y = AX for an orthogonal N ×N matrix A [19].

Figure 2: Block diagram of a linear transform coder

In LTC, N independent scalar quantizers {Q1, Q2, ..., QN} are respectively applied to the decorrelated inputs

Y = {y1, y2, ..., yN} [19]. The inverse transform A−1 is applied to the quantized output Ŷ to produce the

reconstruction X̂ [19]. LTC can also be extended to a two-dimensional input (such as an image) by considering

X as an N ×N block matrix and applying the transform Y = AXAT [19]. As A is an orthogonal matrix

transformation, it is invertible and lossless. For MSE, the overall distortion of the system is therefore

DLTC =

N∑
i=1

E[(Xi − X̂i)
2]

= E[∥X− X̂∥2]

= E[∥A(X− X̂)∥2]

= E[∥Y − Ŷ∥2] [19]. (3.11)

Hence, the overall system distortion is equal to the distortion of the quantizers Q1, . . . , QN . These quantizers

can be optimized using the Lloyd-Max algorithm to minimize the overall distortion of the system.

The question for LTC becomes determining an appropriate orthogonal transform matrix A, examples of

which include the Karhunen-Loeve (KL) Transform and Discrete Cosine Transform (DCT) [19]. The cele-

brated JPEG compression standard uses the DCT as its orthogonal transform, specifically the matrix

T = {tmn}N−1
m,n=0 =


√

2
N cos( π

Nm(n+ 1
2 )) m = 1, . . . , N − 1, n = 0, . . . , N − 1√

1
N cos( π

Nm(n+ 1
2 )) m = 0, n = 0, . . . , N − 1

[19]. (3.12)

In JPEG, the two-dimensional version of T is applied to 8×8 blocks of pixels, quantized, and then losslessly

encoded according to the system shown in Figure 3 [20].

8



Figure 3: Block diagram of JPEG

3.1.4 Nonlinear Transform Coding

NTC replaces the linear transformation, A, with nonlinear analysis and synthesis transformations. Nonlinear

functions are more versatile and generally capable of achieving better decorrelation. Furthermore, as seen in

Figure 7, LTC is limited to lattice quantization, while NTC can further adapt to the source data distribution

[1]. The issue with NTC is that it is difficult in practice to determine an appropriate nonlinear transform,

particularly in high dimensions [1]. The universal approximation capabilities of Artificial Neural Networks

offer a potential solution to this problem.

Figure 4: Comparison of LTC (left) and NTC (right) for a banana-shaped distribution [1]. Lines indicate
quantization bins, with dots the codebook vectors

9



3.2 Neural Networks

Here, we give a brief overview of the mathematical formulation of ANNs and convolutional neural networks

(CNNs), two architectures used for the analysis and synthesis transformations in this project.

3.2.1 Artificial Neural Networks

Modelled after how the human brain processes information, ANNs comprise multiple layers of parametric

functions, where each layer is a mapping f : RA → RB . Specifically, for input vector u ∈ RA, weight matrix

W ∈ RB×A, and bias vector v ∈ RB ,

f(u) = σ(Wu+ v) [1]. (3.13)

Here, σ : R→ R is a non-linear activation function applied to the output of the neuron to determine whether

it is “on”. Common examples include the Sigmoid function σ(x) : R→ (0, 1)

σ(x) =
1

1 + e−x
(3.14)

and Rectified Linear Unit (ReLU) function σ(x) : R→ [0,∞)

σ(x) =

x x ≥ 0

0 x < 0
(3.15)

Of these, ReLU is particularly popular due to its low computational cost and simple implementation com-

pared to the Sigmoid and other activation functions [21].

A neural network can have many layers, limited in theory by only computational power. The inner lay-

ers of the network are called hidden layers, the first layer the input layer, and the last layer the output layer

[21]. Figure 5 shows a simple neural network architecture with two hidden layers.

Figure 5: Example neural network architecture

The neural network defined in (3.13) and shown in Figure 5 is often called a Multilayer Perceptron (MLP),

where information flows only in one direction [21]. In the context of this project, MLPs are useful for their

ability to approximate any nonlinear function. In particular, the approximation capability grows with the

10



depth of the network (number of layers) and number of nodes (dimensions of A and B) in a layer [21].

For a neural network f(x;θ) with parameters θ ∈ Rs, training attempts to minimize an objective cost

function C : Rs → R with respect to the training parameters. A common choice for C is the function

C(θ) = E[L(f(x;θ),y)] (3.16)

which computes the expectation over all training samples of a loss function L that measures the difference

between the neural network output and a ground truth value y [21]. As C is usually highly nonlinear and

non-convex, it is infeasible to obtain an analytic global minimum. Instead, gradient descent is performed on

C, with parameters updating according to

θt+1 ← θt − α∇C(θt) (3.17)

for the learning-rate hyperparameter α and training step t [21]. For a sufficiently small α, this algorithm

is guaranteed to find a local minimum of C. In practice, it is computationally impractical to compute the

gradient over a large number of data samples. Instead, stochastic gradient descent (SGD) is performed

by computing the gradient on a random subset of the data. The SGD algorithm used in this project is

Adam, which updates the learning rate α throughout training, improving convergence stability under sparse

gradients and noisy data [22].

3.2.2 Convolutional Neural Networks

Of particular interest to the application of image compression are CNNs, a specific type of ANN that includes

layers that convolve the dataX with a trainable kernel matrix h [23]. This creates a lower-dimensional feature

map of the original data source that can be fed into dense neural network layers. CNNs have been shown

to be effective at image segmentation and recognition while reducing the complexity and size of the network

[23]. A summary of the key features of convolution layers is given below, while curious readers are encouraged

to read Saad et al. for further details [24].

• Translation Invariance: The same filters are used across the entire image, meaning convolution layers

can detect patterns regardless of their location.

• Hierarchical representation: Convolution layers are often stacked on top of each other, letting each

successive layer learn more complex and abstract features of the image.

• Spacial Locality : Convolution layers only connect neurons to a local neighbourhood, reducing the

number of parameters and making the network more computationally efficient.

• Down-sampling : CNNs include pooling layers which downsample the feature maps by taking the

maximum (or average) across local regions.

A sample CNN architecture is shown in Figure 6. For image compression tasks, the analysis and synthesis

transforms will be implemented using CNNs.

11



Figure 6: Example CNN architecture [25]

3.3 Previous Work

NTC is a highly active area of research, making it infeasible to conduct an exhaustive literature review.

Instead, we discuss here select results that have motivated and guided our work. First, the paper Nonlinear

Transform Coding by Ballé et al. reviews a large class of NTC methods, in particular deriving loss functions

that replace quantization with additive uniform noise [1]. Their results using a randomized offset guide much

of our work in creating a differentiable cost function in Section 4. In Variational image compression with

a scale hyperprior, Ballé et al. introduce learned entropy models, an important extension of the primitive

entropy model used in this project [26]. On the topic of activation functions, the paper End-to-end opti-

mization of nonlinear transform codes for perceptual quality by Ballé, Laparra, and Simoncelli demonstrated

the experimental effectiveness of the Generative Divisive Normalization (GDN) activation function for image

compression [27]. In particular, they introduce an approximate inverse to GDN that forms the synthesis

transform in NTC. Finally, in Comparison of Full-Reference Image Quality Models for Optimization of Im-

age Processing Systems Ding et al. give a thorough comparison of different distortion metrics for image

compression [28]. Of particular interest to this project is the discussion of perceptual distortion metrics,

which have been shown to better reflect how humans perceive distortion in images. This work also discusses

some of the implementation issues of perceptual distortion metrics, primarily stabilization issues including

model convergence and sensitivity to initialization conditions. For a more complete review of NTC literature,

Nonlinear Transform Coding includes a discussion of work in this field [1].

12



4 Solution

Here, we will give the mathematical formulation of the NTC system created in this project. This description

will also include a discussion of design choices specific to this project. Recall that the aim of this project is

to replace the analysis and synthesis transforms in LTC with ANNs, as shown in Figure 7.

Figure 7: Nonlinear transform coding system outline

It is important to note that although a lossless encoder and decoder are included in this diagram for com-

pleteness, they are not a focus of this project and will not be implemented. Instead, entropy rates will be

computed using the estimated bit rates of the quantized latent vectors. It is also assumed that the channel

or storage system is lossless, which would not be true for practical applications.

4.1 Cost Function

We define the analysis transform and synthesis transforms as ga and gs respectively, with respect to the

trainable parameter set θ. To optimize the analysis and synthesis neural networks, we minimize the cost

function

LNTC = Ex[− logP (⌈ga(x)⌋) + λ d(x, gs(⌈ga(x)⌋))] (4.1)

where ⌈·⌋ is quantization to the nearest integer [1]. Here, − logP (⌈ga(x)⌋) represents the rate of the system

in bits (i.e. log = log2) for a probability distribution P and d the distortion between x and the reconstruc-

tion gs(⌈ga(x)⌋)). The user-defined parameter λ is a Lagrange multiplier used for rate-distortion traversal.

Specifically, as training jointly minimizes the rate and distortion, the trade-off between them can be pre-

determined by the choice of λ. For example, to achieve a lower distortion one can increase the value of λ,

which would in turn increase the system rate.

An issue with the cost function given in (4.1) is that the quantization operation is discontinuous and cannot

be differentiated. Thus, to perform gradient descent a proxy loss function must be introduced. In particu-

lar, by modelling the quantization step as an additive perturbation this problem can be avoided. Consider

replacing the quantization step with a known offset value o, and formulating (4.1) as

LNTC = Ex,o[− logP (⌈ga(x) + o⌋ − o;o) + λ d(x, gs(⌈ga(x) + o⌋ − o))]

(∗) = Ex,o[− logP (ga(x) + o) + λ d(x, gs(ga(x) + o))] (4.2)

13



with (∗) following from [1]. It is clear that when the continuous offset is known, (4.2) can be minimized

using SGD. A simple optimization protocol could then be to

1. Minimize (4.2) using offset o;

2. Find the offset o′ that minimizes LNTC [1].

Note that if the continuous entropy model is sufficiently accurate, by translation invariance of differential

entropy, P (x;o) = P (x + o). Thus, the minimal offset o′ could be determined without re-estimating the

discrete entropy models [1]. It is still challenging to find o′, as one cannot perform gradient descent on

this parameter [1]. While we could find o′ using a grid search over all possible offsets, in high dimensions

this would be intractable. Instead, some papers have theorized that, motivated by a similar result for

Laplacian distributions, choosing an offset to align the mode of the entropy model with a codebook vector

of the quantizer is optimal [26] [29]. For a fixed-mode entropy model such as the Gaussian distribution,

this suggests that without loss the offset can be fixed a priori. Based on this analysis and for simplicity of

implementation, it was therefore assumed that the offset o ∼ Uniform(−1
2 , 1

2 ) was optimal. Specifically, for a

latent vector of dimension N , we add uniform noise according to the random vector u ∼ Uniform(−1
2 , 1

2 )
N ,

creating the differentiable cost function

LNTC = Ex,u[− logP (ga(x) + u) + λ d(x, gs(ga(x) + u))]. (4.3)

It was observed throughout training, and demonstrated by the results achieved, that this additive noise

proxy sufficiently models the quantization process.

The choice of probability distribution for the entropy model is the next design choice that must be made.

We select a continuous entropy model, noting that the addition of uniform noise has caused the latent vec-

tors to be continuous-valued. For this, two common choices include the Normal(µ, σ2) and Laplace(µ, b)

distributions [1]. The Normal(µ, σ2) has mean µ, variance σ2, and probability density function (pdf)

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (4.4)

while the Laplace(µ, b) distribution has mean µ, variance 2b2, and pdf

f(x) =
1

2b
exp

(
−|x− µ|

b

)
. (4.5)

To determine which entropy model best suited the chosen CT Scan dataset, the correlation between each

entropy model and the entropy rate of the quantized latent vector was recorded over several architectures.

A training sample is shown in Figure 8, with Figure 8a the original values and Figure 8b the values with

a constant offset removed. In both figures, the strong connection between both entropy models and the

estimated bits per pixel (bpp) can be seen. It was further observed that training converged similarly well

for each entropy model. Ultimately, due to a slightly higher correlation and better training results on the

chosen CT scan dataset, the Gaussian entropy model was selected moving forward.

14



(a) Original training (b) Offset removed

Figure 8: Estimated entropy rates of images during model training

It is important to note that the quantized latent vector is assumed to be decorrelated and mutually inde-

pendent, meaning for a latent vector y = [y1, . . . , yN ] the total entropy is computed as

− logP (y) = − log

N∏
i=1

P (yi)

=

N∑
i=1

− logP (yi) (4.6)

Using the Gaussian entropy model, the rate component of the loss for a single latent dimension with respect

to mean and variance vectors µ = [µ1, . . . , µN ] and σ = [σ1, . . . , σN ] becomes

− logP (yi) = − log

(
1√
2πσ2

i

exp

(
−(yi − µi)

2

2σ2
i

))

=
1

2
log(2πσ2

i ) +
(yi − µi)

2

2σ2
i

log(e). (4.7)

To fit the entropy model to the quantized data, the sample mean and variance are computed over the entire

dataset, which are used in the computation of the entropy rate. The computation of µ and σ is described

in detail in Section 4.2. The distortion metric originally used was the squared error, meaning for an input

image x = [x1, . . . , xk] with the N latent dimensions each having mean µ = [µ1, . . . , µN ] and variance

σ = [σ1, . . . , σN ], the cost function becomes

LNTC = Ex,u

[
N∑
i=1

(
1

2
log(2πσ2

i ) +
log(e)

2σ2
i

(ga(x)i + ui − µi)
2

)
+

λ

k

k∑
j=1

(xk − gs(ga(x) + u)k)
2

]
. (4.8)

15



For a set of M training samples {x1, . . . ,xM}, SGD can then be applied to the training data cost function

LNTC =
1

M

M∑
m=1

[
N∑
i=1

(
1

2
log(2πσ2

i ) +
log(e)

2σ2
i

(ga(xm)i + ui − µi)
2

)

+
λ

k

k∑
j=1

(xmk
− gs(ga(xm) + u)k)

2

]
. (4.9)

Implementing (4.9) in Tensorflow caused numerical instability issues in practice, particularly in the com-

putation of the rate for small σi. This problem was solved by applying a regularizing coefficient of 1
N was

applied to the rate term, yielding the final cost function

LNTC =
1

M

M∑
m=1

[
1

N

N∑
i=1

(
1

2
log(2πσ2

i ) +
log(e)

2σ2
i

(ga(xm)i + ui − µi)
2

)

+
λ

k

k∑
j=1

(xmk
− gs(ga(xm) + u)k)

2

]
. (4.10)

Note that this regularizing coefficient only changes the value of λ required to achieve a certain minimum and

does not affect the overall training or rate-distortion performance of the system.

4.2 Training Algorithm

Algorithm 1 was used to optimize the parameters θ of the neural network analysis and synthesis transforms.

In particular, in each epoch the mean and variance of the quantized latent vectors are computed, which are

used in the batch loss function given in (4.10). Algorithm 1 was implemented using a custom TensorFlow

class, where the Adam optimizer was used to compute and apply gradients using an adaptive learning rate.

The code used in the training routine is shown in Appendix 9.1. Note here that the optimization of the

end-to-end system does not involve finding optimal quantizers. Instead, quantization is fixed to the nearest

integer and the analysis and synthesis transforms are used to determine the effective quantization bins. In

this way, the effective quantization bins can be shaped to best fit the learned data distribution. A more

detailed discussion of this idea is given in Section 6.1.

Algorithm 1 System Training

procedure Train(data, numEpochs, batchSize, λ, α) ▷ learning rate α
for epoch in numEpochs do

µ← Mean(⌈ga(data)⌋) ▷ Compute mean and variance of quantized data
σ ← Variance(⌈ga(data⌋)
for dataBatch in data do ▷ dataBatch of size batchSize

Cost← rate + λ ∗ distortion ▷ Computed using (4.10)
Gradients← ∇θ(Cost)
θ ← θ − α ∗Gradients

end for
end for
return θ ▷ Optimized neural network parameters

end procedure

16



4.3 Implementation Details

4.3.1 Tools and Technology

To implement the solution outlined above, Python was used with TensorFlow, a widely-used library for

building deep neural networks [30]. Due to the significant computational demands of training such networks,

the project relied on a GPU cluster provided by Queen’s School of Computing. In particular, the project

utilized a powerful NVIDIA A5000 GPU, which has 24GB of memory and was instrumental in the training

process.

4.3.2 Dataset

To train and test the model, the project utilized a large-scale dataset of CT images publicly available through

the National Institutes of Health (NIH) called DeepLesion [2]. This dataset contains 32,000 axial computed

tomography (CT) slices from 10,594 CT scans of 4,427 unique patients. Each image is a 512x512 grid of

grey-scaled pixels, meaning pixel values range from 0 (black) to 255 (white). Figure 9 provides an example

of a typical CT scan that this project deals with.

Figure 9: An example of a CT scan image from the DeepLesion dataset

17



5 Solution Iterations

A series of iterative improvements were carried out on the solution described in Section 4. This section

outlines the enhancements made to improve the model’s performance, while also describing the trade-offs

associated with each decision.

5.1 Image Tiling for Computation Efficiency

A common obstacle in using neural networks for image processing is the computational impracticality of

model training caused by the large size of the images. This is because the number of trainable parameters

scales quadratically with the input dimensions. A widely-used technique in the literature to tackle this

limitation is to partition the original image into tiles and train the model on these smaller tiles instead [31].

When using the model, an image is first sliced into tiles of predetermined dimensions, fed through the model,

and the reconstructed tiles are then stitched back together.

This approach was utilized in our model design, as it was found that training on the full 512 × 512 CT

scans would exceed the avaiable GPU memory. Each 512× 512 image was partitioned into 64 64× 64 tiles,

as shown in Figure 10. These tiles were sufficiently small to train the model on the available hardware.

Figure 10: A 512x512 CT scan partioned into 64 × 64 tiles.

While the invariant properties of convolution neural networks enable the model to be trained on tiles rather

than full images, there are trade-offs to consider. When deconstructing an image into tiles, the spatial

correlations between pixels in different tiles are lost. This results in a visible “blocking effect” as pixels

around the tile borders are incorrectly reconstructed because the model is unaware of pixels in adjacent tiles.

In Figure 11b the borders of the tiles are visible in the reconstructed image along with the misalignment of

features that span multiple tiles. Due to the limited availability of high-performance computing hardware,

the team was forced to use image tiling despite the blocking effect. While not explored in this project,

Section 7.3 discusses ways to reduce the blocking effect using Fourier transforms and overlapping tiles.

18



(a) Original (b) Compressed and reconstructed

Figure 11: A blocking effect is visible in the reconstructed image after stitching together the tiles.

5.2 SSIM Distortion Measure for Improved Human Perception

MSE is a ubiquitous distortion measure in data compression and machine learning due to its ease of compu-

tation and desirable mathematical properties. Specifically, MSE is a continuous and differentiable function,

making it convenient for optimization algorithms like gradient descent. However, when applied to image

comparison, MSE is limited in its ability to represent the human visual system’s perception of image quality

and is particularly sensitive to noise and image artifacts [32]. Aiming to address these limitations, the struc-

tural similarity index measure (SSIM) is a distortion measure that more closely resembles human perception

[33]. It addresses the shortcomings of MSE’s ability to capture local spacial structures within images and

considers an image’s luminance and contrast.

Mathematically, SSIM : (x, x̂)→ [−1, 1] is a measure between an image x and its reconstruction x̂ comprised

of a weighted product of comparison measurements,

SSIM(x, x̂) = l(x, x̂)α · c(x, x̂)β · s(x, y)γ . (5.1)

Here, l(·), c(·), and s(·) are luminance, contrast, and structure measures defined by

l(x, x̂) =
2µxµx̂ + c1
µ2
x + µ2

x̂ + c1
c(x, x̂) =

2σxσx̂ + c2
σ2
x + σ2

x̂ + c2
s(x, x̂) =

σxx̂ + c3
σxσx̂ + c3

where µi, σ
2
i , σij are sample means, variances, and covariances, respectively, and ci are variables to stabilize

the division with weak denominators [34]. An SSIM value of 1 indicates that the two images are identical

while a value of −1 indicates that the two images are completely dissimilar (in practice SSIM values usually

fall between 0 and 1). This distortion measure is differentiable, meaning (4.10) can be adapted to use SSIM

as the distortion.

The improvements of using SSIM over MSE in human perception can be seen in Figure 12. It is clear

that despite both having MSE of 255, the image on the right is more similar to the original image. Opposed

to MSE, SSIM is able to correctly capture the difference as can be seen by the higher score of the image on

the right in distortions that humans perceive.

19



Figure 12: Comparison of SSIM and MSE for image distortion [33].

There are important drawbacks to consider when using SSIM as a distortion measure. The SSIM calculation

requires the computation of the sample’s mean, variance, and covariance. This is computationally expensive,

increasing the training time of the neural networks. Both MSE and SSIM were tested in the loss function

and while training took longer using SSIM, the improvements to the reconstruction quality using SSIM

outweighed the additional training time. Further, the complexity of SSIM can lead to numeric instability in

network training. To circumvent this issue, MSE was used in the initial epochs where the instability is most

significant, as the model parameters are randomly initialized and the network has not yet learned to predict

accurate outputs. After the initial epochs, SSIM was then used as a more informative distortion measure.

5.3 Regularization Techniques to Address Overfitting

A common problem in machine learning is overfitting. Overfitting is when a model becomes overly complex

and fits the training data too closely, leading to poor performance on new, unseen data. In the initial itera-

tions of the model, overfitting was present during training, as can be seen in Figure 13a. The SSIM score on

the test data (unseen data) stops improving at the 30th epoch while the score for the training data continues

to increase. This indicates that the model is no longer generalizing well and is instead “memorizing” the

noise and idiosyncrasies present in the training data.

To address overfitting, several regularization techniques commonly used in image processing neural networks

were tested. The successful techniques are summarized below:

• Dropout Layers: During training, a sample of neurons are temporarily “dropped out” with a preset

probability. The remaining neurons are then trained and their parameters updated. In each training

iteration, different neurons are dropped from training. This forces the model to learn more generalizable

representations of the data rather than memorize specific features in the training data.

• Weight Decay: A penalty term was added to the loss function that penalizes large weight values

using the L2 norm,

λ

N∑
i=1

|βi|2

where βi are the network weights and λ is a hyper-parameter that dictates how strongly the regular-

ization is enforced. This penalty encourages the model to have small weight values, helping prevent

the model from memorizing idiosyncrasies in the training data that aren’t present in the population.

20



• Diverse Training Set: A diverse training set ensures that the model performs well on all types of

data in the domain. As described in Section 4.3.2, the CT scan dataset contains 32,000 images. After

partitioning each image into 64 tiles, there are 2.24 million images for training. Since it is infeasible

to train on this much data, a subset was used for the training data. To generate this training dataset,

1,000 images were randomly sampled from each of the 64 tiles to ensure a wide range of CT scans, and

an equal proportion of tile locations are contained in the training data.

(a) Before Regularization (b) After Regularization

Figure 13: Plots of the Rate and SSIM during model training before and after implementing regularization
techniques to address overfitting.

After implementing the above regularization techniques, the generalization capabilities of the model vastly

improved, as is evident in Figure 13b. Here, the test SSIM score no longer plateaus and instead continues

to improve with the training data SSIM. While these techniques helped address overfitting, they resulted in

the model taking more training iterations to converge. This is because the dropout layers add stochasticity

to the training process and the weight decay adds additional compute cost to the loss function.

5.4 GDN Activation Function for Improved Image Processing

The activation function takes an input signal from a network layer and produces an output signal to be fed

into the next layer. As described in Section 3.2.1, ReLU is commonly used due to its computational efficiency

and ease of implementation. However, analogous to MSE underperforming in Section 5.2, the simplicity of

ReLU results in a loss of statistical properties that are needed to reconstruct the image.

GDN is an alternative activation function commonly used in image compression neural network architectures

with a (simplified) equation given by,

GDN(x) =
x√∑N

i=1 γix
2
i + c

[35]. (5.2)

GDN improves the stability and robustness of the network by normalizing outputs to have zero mean and

unit variance. Further, GDN preserves statistical properties of the input data by normalizing each element

by the sum of its neighbouring elements [35]. Of particular importance to this project, Ballé et al. has

21



shown that GDN has an inverse transform which we use in the synthesis network to reconstruct the image

[27]. The downside of GDN is that it is significantly more computationally expensive than ReLU, which

slows down the network training.

5.5 Contrast Intensity Rescaling for Enhanced Image Quality

An issue observed while designing and training the compression model was that the reconstructed images

had lower contrast than the original, as can be seen in Figure 14. Given the “black box” nature of neural

networks, it can be difficult to determine the exact cause of this. After conducting a literature review, several

potential culprits have been identified. First, activation functions that have a finite output range can result

in vanishing gradients if the inputs are very positive or very negative; as the output becomes “stuck” at the

function’s upper or lower limit, resulting in very small gradients [36]. Thus, it is possible that the ReLU

activation function in some of the hidden layers were mapping a significant amount of negative values to

zero, resulting in a loss of information (this is known as the dying ReLU problem) [36]. Another explanation

could be related to the neural network architecture, as improper layer designs and parameter selection can

also result in a loss of contrast.

(a) Original (b) Reconstructed (c) Rescaled

Figure 14: A reconstructed image with low contrast is rescaled to more closely resemble the original image.

As the team was unable to identify the underlying problem, intensity rescaling was used to match the

reconstructed image’s contrast to the original image. Let Iij be the intensity value of a pixel located at

position (i, j) in the reconstructed image. Further, let p1 and p99 represent the 1st and 99th percentiles of the

intensity distribution of the original image (determined using a sample histogram). Then, the reconstructed

image can be rescaled to match the original distribution using

Irescaledij =
Iij − Imin

Imax − Imin
· (p99 − p1) + p1, (5.3)

where Imax and Imin are the largest and smallest intensity values, respectively, in the reconstructed image.

After applying this transformation to the reconstructed image, it is clear that the contrast of Figure 14c

matches that of the original image more closely. In practice, intensity rescaling could be implemented by

allocating p1 and p99 as side information stored with the compressed image. Then, reconstruction could

use these values to perform the rescaling according to (5.3). The storage size of these values is negligible

compared to the images and therefore are omitted in compression rate calculations.

22



5.6 Final Model Design and Network Architecture

After implementing the changes described above, the final model design is summarized in Figure 15. The

analysis and synthesis transforms are implemented as neural networks whose architecture are summarized in

Figure 15. For full details on the network implementation, such as specific layer parameters, see Appendix

9.4.

Figure 15: Finalized end-to-end image compression workflow.

As described throughout the above sections, each iteration to the model incurred trade-offs to consider.

Table 13 summarizes these trade-offs.

Table 3: Summary of the model design iterations and their tradeoffs.

Iteration Improvement Drawback

Image Tiling Made training Blocking artifacts

computationally feasible in reconstructed image

SSIM Distortion Measure Improved reconstruction quality Numerical instability and complexity

Overfitting Regularization Improved model generalization Increased computational complexity

GDN Activation Function Improved reconstruction quality Increased computational complexity

Contrast Intensity Rescaling Improved reconstructed contrast Does not address underlying problem

23



6 Testing and Results

Here, we describe the testing of the system and results achieved. We also give commentary on the limitations

of this system, particularly in comparison to industry standards such as JPEG.

6.1 One-Dimensional Laplacian

The system was tested on a toy problem to confirm correct performance, specifically that it is capable

of learning and compressing data drawn from a simple source distribution. We generated 10,000 training

points according to the Laplace(0, 1) distribution given in (4.5). Then, using the model architecture shown

in Appendix 9.2 the model was trained for 20 epochs using a batch size of 128 and λ = 150. The results of

the model on 10,000 test points can be seen in Figure 16. Note that the reconstruction using the uniform

noise perturbations in Figure 16b almost exactly matches the original distribution in Figure 16a. This is

evidence of the system’s ability to learn the input distribution and generalize to unseen data points. The loss

from the approximation of quantization through additive uniform noise can be seen in the difference between

Figure 16b and 16c. The quantized reproduction, although it maintains the shape of the distribution, is

slightly overfit around zero and not as exact of a reconstruction. Still, the similiarity of Figure 16a to 16c

supports approximating quantization as uniform noise, as the quantized system still learns the underlying

data distribution.

(a) Original Distribution (b) Uniform Noise Reconstruction (c) Quantized Reconstruction

Figure 16: Histograms of the Laplacian distribution and model reconstructions

As this is a one-dimensional example, the analysis and synthesis transforms can be visualized, shown in

Figure 17. It is interesting to observe that although no restriction was imposed that the transformations be

inverses, the analysis and synthesis transforms have naturally converged to be near inverses of each other.

This matches our intuitive understanding that the nonlinear analysis and synthesis transforms replace the

orthogonal transforms A and A−1 from LTC. Figure 17 also shows the effective quantization regions and

codebook vectors in solid and dotted lines, respectively. It can be seen that the codebook vectors are

concentrated close to the high-density area of the data around zero, as would be expected for an optimal

quantizer. This shows that the quantization can be fixed a priori, allowing the neural networks to produce

an optimal effective quantizer by learning the data distribution.

24



↑
③

-

③

->

⑧)③

N
W

Figure 17: Analysis and synthesis transformations visualized in two dimensions. Dotted lines indicate the
codebook vectors, while solid lines indicate the quantization region boundaries.

6.2 Handwritten Images

The NTC system was next tested on two-dimensional images, specifically the database of handwritten images

provided by Modified National Institute of Standards and Technology (MNIST). MNIST consists of 70,000

grayscale images, each 28×28 pixels and 8 bpp. This testing aimed to determine if the NTC training could be

applied to CNNs and compare different architectures and activation functions using a more computationally

efficient application. Specifically, we wanted to compare the efficacy of the ReLU and GDN activation

functions for our system. Figure 18 shows the rate-distortion functions for identical analysis and synthesis

architectures, differing only in the activation function used. Appendix 9.3 details the exact architecture

used, which for each value of λ was trained on 200 epochs using 10,000 training images and a batch size of

32. The Peak Signal-to-Noise Ratio (PSNR) plotted on the y-axis measures the distortion using

PSNR = 10 log10

(
2552

MSE

)
. (6.1)

The bpp was estimated using an approximation of the entropy rate of the quantized latent vector. For test

data x = {x1, . . . ,xM} and test quantized latent vectors y = {y1, . . . ,yM} = {⌈ga(x1)⌋, . . . , ⌈ga(xM )⌋}
with yi = [yi,1, . . . , yi,N ] (for N scalar quantizers), we note that the assumed independence of each quantizer

output allows us to compute the entropy of each dimension individually. Specifically, we use a method similar

to Monte Carlo approximations to compute

P (yi,j) =
1

M

M∑
k=1

1{yi,j = yk,j}, (6.2)

counting the number of appearances of that integer in the test set and normalizing by the number of test

points. Then, the entropy of a test point yi can be estimated in bits as

H(yi) = H

(
[yi,1, . . . , yi,N ]

)
= −

N∑
k=1

P (yk,j) log2 P (yk,j) (6.3)

25



This entropy can then be used to determine the bpp of the image. It is important to note that although this

is an estimate of the entropy, the assumption of independence and lack of lossless entropy coding means it

is also an upper limit. In practice, using a lossless entropy code would yield lower entropy rates than those

reported in this thesis.

Referring to Figure 18, it is clear that the GDN activation function outperforms ReLU using the metric

of PSNR. This matches GDN’s theoretical superiority discussed previously in Section 5.4. However, this

testing also confirmed the increased computational complexity incurred through GDN activation functions,

as an epoch of training using GDN took 10 seconds, while an epoch for the ReLU architecture took only 5

seconds (running on a 24 GB NVIDIA RTX a5000 GPU). Despite the longer training time, the requirement

of high reconstruction quality in the compression of CT scans means GDN will be used as the activation

function in the final testing.

Figure 18: MNIST Rate Distortion Graph of ReLU and GDN activation functions

Figure 19 shows an original image from the MNIST test set and the reconstructed versions using the ReLU or

GDN activation functions. Perceptually, there is little difference between the two reconstructions, although

the low number of pixels in the original image makes it difficult to assess the overall quality.

(a) ReLU MNIST (0.194 bpp) (b) Original MNIST (c) GDN MNIST (0.179 bpp)

Figure 19: Compressed and original MNIST images from test set

26



6.3 CT Scans

Using the segmented dataset of 64,000 images described in Section 5.3, for each λ the model was trained

for 100 epochs with a Gaussian entropy model and additive uniform noise. The exact architecture of the

analysis and synthesis transforms is shown in 9.4. As discussed in Section 5.2, the poor visual quality of

reconstructed images motivated the team to investigate the SSIM as an alternative distortion metric. Due

to the importance of visual quality in the application of CT scan compression, the SSIM was used in the

testing detailed here. Figure 20 shows the rate-distortion function of the CT scan dataset, using the NTC

model and JPEG standard as a baseline comparison. It is evident that JPEG outperforms NTC in this

setting, achieving a noticeably higher PSNR, corresponding to a lower MSE. However, there are several

factors affecting the PSNR of our NTC model. First, the neural networks are optimized for SSIM, meaning

that the PSNR is a consequence of this training. It can be reasonably assumed that training the system

specifically for MSE would lead to a higher PSNR, although at the cost of perceptual distortion. The lack

of lossless entropy encoding, as previously discussed, also leads to a higher estimated bpp than in reality.

Finally, there are several significant improvements to the system (discussed in Section 7) that we theorize

would cause the results to surpass JPEG, as it has for similar NTC systems [1].

(a) JPEG (LTC) (b) NTC

Figure 20: Rate distortion graphs for the compression of CT scans

Figure 21 shows a sample CT scan from the test set of full images that has been compressed to 0.77 bpp

using JPEG and NTC. The contrast intensity of the NTC reconstruction has been rescaled according to the

process described in Section 5.5. In the NTC reconstruction, blocking artifacts can be seen from the image

tiling performed in Section 5.1. However, the perceptual similarity to the original image is quite high, with

most of the image details preserved despite the high compression rate. The compression and reconstruction

time was also computed for the final model to understand if this system could be practically deployable

with little to no delay. Running the entire model on 1000 full test images, the entire sequence of tiling,

compression, reconstruction, and contrast intensity rescaling took an average of 0.03059 seconds, for a total

time of 30.59 seconds. This testing was performed on a Macbook Pro laptop without GPU accelerators,

demonstrating that the system can be run on common hardware.

27



Figure 21: Original (middle) and reconstructed (left: JPEG, right: NTC) images at 0.77 bpp

6.4 Results Discussion

The results described clearly indicate the ability of the NTC system to learn and compress from an arbi-

trary distribution. Further, with the optimizations specific to CT scan compression, promising results were

achieved. Without the blocking effect, the qualitative reproduction quality is quite high, with limited loss of

detail and preservation of the core information. It also is sufficiently fast and simple to be practically imple-

mented without the need for advanced computing. Although it falls short of the JPEG standard, based on

the time available and the steep learning curve associated with this project, these results can be reasonably

declared a success.

28



7 Future Work

While the group was overall successful in achieving the scope of our project, there are several limitations that

could be addressed in future work. Specifically, future work includes refining the entropy model, introducing

entropy coding, and overall improvement of model implementation.

7.1 Improve Entropy Model

A key limitation was the primitive Gaussian entropy model used in model training, which could be improved

by introducing a Gaussian mixture model. A Gaussian mixture model p is the finite weighted sum of

individual Gaussian distributions given by

p(x) =

N∑
i=1

wigi(x) (7.1)

for a Gaussian distribution gi with mean µi and variance σi and mixture weighting wi such that
∑N

i=1 wi = 1

[37]. Mixture models can fit more general data and would likely give a better approximation of the entropy.

However, this entropy model would also require careful consideration of how to best fit it to a set of latent

output vectors in a computationally efficient way. The current implementation is simple, which is beneficial

for implementation, but as was discussed in Section 4 is not a perfect model of the actual entropy rate.

Introducing mixture distributions would improve the system by accurately converging to a rate minimum

during optimization.

The model could also be improved by introducing models that do not assume the decorrelation of latent

vectors. Decorrelation is not a practical assumption in most real-world situations, nor is it optimal in gen-

eral, meaning designing a system that can incorporate and leverage the correlation between latent variables

would be an important next step [38]. Previous work on NTC has had success using learned entropy models

to approach this problem [1]. In particular, learned entropy models use forward and backward adaption

to incorporate ANN-based entropy models that can be jointly optimized alongside the transforms [1]. This

technique has seen considerable success, notably being shown to outperform JPEG and other NTC models

on image compression in [1].

7.2 Introduce Entropy Coding

Another limitation of the current model is that it estimates the final entropy rate instead of implementing

entropy coding. Entropy coding is a lossless data compression technique that encodes data into a binary

string. In the compression pipeline seen in Figure 7, entropy coding would be performed on the quantizer

output to create a binary string used for storage or transmission. The number of bits in the string would be

directly used to compute the bpp of the image, which in the current implementation is an estimate.

At a high level, an optimal entropy code aims to minimize the entropy of the data by assigning shorter

codes to more frequently occurring symbols and longer codes to less frequently occurring symbols. Two of

the most commonly used entropy encoding methods are Huffman and Arithmetic coding. Huffman coding

constructs a binary tree where each leaf node represents a symbol in the data, and the path from the root to

the leaf node represents the code assigned to that symbol [39]. The algorithm starts by creating a set of leaf

29



nodes, one for each symbol in the data. It then repeatedly combines the two nodes with the lowest frequency

of occurrence, creating a new internal node whose frequency is the sum of the frequencies of its children. This

process continues until there is only one node left, which represents the root of the binary tree. The codes are

assigned by traversing the binary tree from the root to each leaf, with a 0 assigned to each left branch and

a 1 assigned to each right branch [39]. The data is then encoded by assigning each symbol its respective code.

Arithmetic coding is another method that assigns a fractional value to each symbol in the data based

on its probability of occurrence. The algorithm divides the range [0,1) into sub-intervals, with the size of

each sub-interval being proportional to the probability of the symbol it represents [39]. The encoded value

for the entire input source is the midpoint of the sub-interval corresponding to the entire data stream [39].

To decode the data, the decoder uses the same probability distribution to reconstruct the original intervals

and determine the symbol corresponding to each [39].

Both Huffman coding and arithmetic coding are optimal and uniquely decodable algorithms. Of these,

arithmetic coding would be implemented, as it can be decoded sequentially and does not require storage of

a binary tree that grows exponentially in size with the number of code words [39].

7.3 Improvements to Model Implementation

While the team was satisfied with the model’s performance, there were some limitations as described in the

results in Section 6. The following list contains areas of improvement for the model implementation.

• Reducing the Blocking Effect: In our current implementation, the tiles partition the image without

any overlap. This results in a blocking effect caused by a loss of information of nearby pixels around tile

borders. Tang et al. have proposed a patch-based overlapping tile strategy to mitigate this effect by

blending the over-lapping regions after processing [40]. Moreover, using Fourier transforms to “smooth”

the blocking effect in the frequency domain is another strategy worth investigating. Lastly, sufficient

computing resources could circumvent the need for image tiling altogether.

• Improving Reconstruction Contrast: As described in Section 5.5, the reconstructed images had a

lack of contrast. Due to time constraints, the team was unable to identify the source of the problem and

instead used intensity re-scaling as a temporary measure. The next step would thus be to analyze the

network architecture to identify the source of the problem. For instance, adjustments to the convolution

layer parameters may be necessary, or the dying ReLU problem may be present.

• Exploring Other Network Architectures: A CNN architecture was used in this project; however,

other network architectures are worth exploring. For instance, Toderici et al. implemented an image

compression network using a Recurrent Neural Network (RNN) architecture [41]. There is also liter-

ature on the use of Transformer architectures in computer vision tasks, which may be applicable to

image compression [42].

30



8 Conclusion

With the current world increasingly reliant on multi-media communication, the demand for the effective

compression of data grows each day. The development of ANNs and computational resources has motivated

a potential shift from LTC to NTC for image compression. The application of this thesis was to develop a

custom NTC model for the compression of high-quality CT scan images for the detection of cancer lesions.

Such an application is vital to the patients, practitioners, and healthcare system identified as stakeholders

and analyzed in Section 2.2.

The results of the project indicate that a custom NTC model is capable of complex image compression

while meeting the needs of all stakeholders. Through the incorporation of entropy modelling and additive

uniform noise, a custom optimizable system was created. By implementing the GDN activation function

and SSIM distortion, this system was trained to compress CT scans. The results were compared to JPEG

compression, and although it did not surpass this standard there are clear avenues for future work that would

improve the system. Importantly, it was also demonstrated that this system can be run on conventional

hardware for fast compression and reconstruction. The results achieved demonstrate the viability of this

method and motivate future work regarding the compression of CT scans using NTC. Specifically, exploring

topics such as improved entropy models, lossless entropy coding, and architecture refinements have been

shown in similar systems to yield significant improvements. It is expected that with further work, NTC will

surpass JPEG and can be implemented as the method of compression in this and many other applications.

31



9 Appendix

9.1 Nonlinear Transform Coding Class

Shown here is the CustomCompression class used to implement Nonlinear Transform Coding with neural

network analysis and synthesis transforms. Note that this version has been significantly reduced from the

actual code to preserve only the core functionality of training. In particular, code to record the training loss

history and compute the loss on a test dataset has not been included, though it was used in practice. Code

implementing the Laplacian entropy model and SSIM distortion are also not given in this version.

class CustomCompression(Model):

""" Custom Compression class inheriting from tf.keras.Model. Implements Nonlinear

Transform Coding using neural network analysis and synthesis transforms .

alpha : lambda parameter used for lagrangian RD traversal

analysis : analysis transform; tensorflow .keras. Sequential model

synthesis : synthesis transform ; tensorflow .keras. Sequential model """

def __init__(self , alpha , analysis , synthesis):

super(CustomCompression , self).__init__ ()

self.analysis = analysis

self.synthesis = synthesis

self.alpha = alpha

self.var = [] # Class attributes to hold latent variance and mean

self.mu = []

def call(self , inputs , training=True): # Overwritten call function , usage: model(data)

x = self.analysis(inputs)

if training: # Use additive uniform noise when training

x = self.add_noise(x)

else: # Quantize during testing

x = self.quantize(x)

return self.synthesis(x)

def gaussian(self , latent): # Gaussian entropy model

result = 1/2*tf.experimental.numpy.log2(2 * 3.1415926535 * self.var) +

tf.math.pow(( latent-tf.cast(self.mu , dtype=tf.float32)), 2)/(2 * self.var)*

np.log2(2.718)

return result

def add_noise(self , latent): # Add uniform noise to each dimension

return latent + tf.random.uniform(tf.shape(latent), -1/2, 1/2)

def quantize(self , latent): # Quantize to the nearest integer

return tf.math.floor(latent + 1/2)

def compression_loss(self , input , output): # Compute loss on a training batch

distortion = tf.reduce_mean(tf.square(input - output))

latent = self.analysis(input)

rate = tf.reduce_mean(self.gaussian(self.add_noise(latent)))

return rate , distortion

def train_step(self , x): # Compute loss of the training data x

with tf.GradientTape () as tape:

y = self(x, training=True)

32



rate , distortion = self.compression_loss(x, y)

loss = rate + self.alpha * distortion

# Compute and apply gradients to the trainable parameters

gradients = tape.gradient(loss , self.trainable_variables)

self.optimizer.apply_gradients(zip(gradients , self.trainable_variables))

return

def train(self , train_data , num_epochs , batch_size=32, lr=0.001):

optimizer = tf.keras.optimizers.Adam(learning_rate=lr)

for epoch in range(num_epochs):

latent = self.analysis(train_data)

self.mu = tf.math.reduce_mean(latent , 0)

self.var = tf.math.reduce_variance(latent , 0)

for i in range(0, len(train_data), batch_size):

train_batch = train_data[i:i+batch_size]

self.train_step(train_batch)

return

33



9.2 Laplacian Neural Network Architecture

The following code details the neural network architecture used in the one-dimensional Laplacian source

testing in Section 6.1.

analysis = tf.keras.Sequential([

layers.Dense(1),

layers.LeakyReLU (),

layers.Dense(10),

layers.LeakyReLU (),

layers.Dense(1),

layers.LeakyReLU ()

])

synthesis = tf.keras.Sequential([

layers.Dense(1),

layers.LeakyReLU (),

layers.Dense(10),

layers.LeakyReLU (),

layers.Dense(1),

layers.LeakyReLU ()

])

34



9.3 MNIST Neural Network Architecture

The following code details the analysis and synthesis transform architecture used to compare the performance

of the ReLU and GDN activation functions on the MNIST dataset. Note that tfc stands for TensorFlow

Compression, a Python library that contains data compression tools for TensorFlow.

GDN = True # If testing GDN activation function

# GDN = False # If testing ReLU activation function

analysis = tf.keras.Sequential(layers.Reshape ((28 , 28, 1)))

if GDN:

analysis.add(layers.Conv2D(16, 3, padding=’same’, activation=tfc.GDN()))

analysis.add(layers.MaxPooling2D ())

analysis.add(layers.Conv2D(32, 3, padding=’same’, activation=tfc.GDN()))

else: # Testing ReLU

analysis.add(layers.Conv2D(16, 3, padding=’same’, activation=’ReLU’))

analysis.add(layers.MaxPooling2D ())

analysis.add(layers.Conv2D(32, 3, padding=’same’, activation=’ReLU’))

analysis.add(layers.MaxPooling2D ())

analysis.add(layers.Flatten ())

analysis.add(layers.Dense(784))

analysis.add(layers.LeakyReLU ())

analysis.add(layers.Dense(64))

analysis.add(layers.LeakyReLU ())

synthesis = tf.keras.Sequential([

layers.Dense(128),

layers.LeakyReLU (),

layers.Dense(784),

layers.LeakyReLU (),

layers.Reshape ((7, 7, 16))

])

if GDN:

synthesis.add(layers.Conv2DTranspose(32, 3, strides=2, padding=’same’, activation=tfc.GDN(

inverse=True)))

synthesis.add(layers.Conv2DTranspose(1, 3, strides=2, padding=’same’, activation=tfc.GDN(

inverse=True)))

else: # Testing ReLU

synthesis.add(layers.Conv2DTranspose(32, 3, strides=2, padding=’same’, activation=’ReLU’))

synthesis.add(layers.Conv2DTranspose(1, 3, strides=2, padding=’same’, activation= ’ReLU’))

synthesis.add(layers.Reshape ((28, 28)))

35



9.4 CT Scan Neural Network Architecture

The following code details the neural network architecture used in the final model. Once again, note that tfc

stands for TensorFlow Compression, a Python library that contains data compression tools for TensorFlow.

analysis = tf.keras.Sequential([

layers.Lambda(lambda x : x / 255.),

layers.Conv2D(filters=16, kernel_size=3, strides=1, activation=tfc.GDN),

layers.MaxPooling2D (),

layers.Conv2D(filters=32, kernel_size=3, strides=1, activation=tfc.GDN),

layers.MaxPooling2D (),

layers.Conv2D(filters=64, kernel_size=3, strides=1, activation=tfc.GDN),

layers.MaxPooling2D (),

layers.Conv2D(filters=128 , kernel_size=3, strides=1, activation=tfc.GDN),

layers.MaxPooling2D (),

layers.Flatten (),

layers.Dropout(0.5),

layers.Dense(2048),

layers.LeakyReLU ()

])

synthesis = tf.keras.Sequential([

layers.Reshape ((4,4,128), input_shape=(2048 ,)),

layers.Dropout(0.5),

layers.UpSampling2D (),

layers.Conv2DTranspose(filters=128 , kernel_size=3, strides=1, activation=tfc.GDN(inverse),

layers.UpSampling2D (),

layers.Conv2DTranspose(filters=64, kernel_size=3, strides=1, activation=tfc.GDN(inverse)),

layers.UpSampling2D (),

layers.Conv2DTranspose(filters=32, kernel_size=3, strides=1, activation=tfc.GDN(inverse)),

layers.UpSampling2D (),

layers.Conv2DTranspose(filters=1, kernel_size=3, strides=1, activation=tfc.GDN(inverse)),

layers.Reshape ((64, 64, 1)),

layers.Lambda(lambda x : x * 255.)

])

36



References

[1] Johannes Ballé et al. “Nonlinear Transform Coding”. In: IEEE Journal of Selected Topics in Signal

Processing PP (Oct. 2020), pp. 1–17. doi: 10.1109/JSTSP.2020.3034501.

[2] Ke Yan et al. “DeepLesion: automated mining of large-scale lesion annotations and universal lesion

detection with deep learning”. In: Journal of Medical Imaging 5.3 (2018), p. 036501. doi: 10.1117/1.

JMI.5.3.036501.

[3] D. Koff, P. Bak, and et al. “Pan-Canadian Evaluation of Irreversible Compression Ratios (“Lossy”

Compression) for Development of National Guidelines”. In: J Digit Imaging 22 (2009), pp. 569–578.

doi: 10.1007/s10278-008-9139-7.

[4] SP Power et al. “Computed tomography and patient risk: Facts, perceptions and uncertainties.” In:

World Journal of Radiology (2016). doi: 10.4329/wjr.v8.i12.902.

[5] Geoffrey D. Rubin. “Lung nodule and cancer detection in computed tomography screening.” In: Journal

of thoracic imaging (2015). doi: 10.1097/RTI.0000000000000140.

[6] Eliezer Robinson et al. “Delay in diagnosis of cancer. Possible effects on the stage of disease and

survival”. In: Cancer 54.7 (1984), pp. 1454–1460.

[7] Lucian Leape, Donald Berwick, and David Bates. “Counting Deaths Due to Medical Errors—Reply”.

In: JAMA : the journal of the American Medical Association 288 (Nov. 2002), p. 2405. doi: 10.1001/

jama.288.19.2405-JLT1120-2-3.

[8] C. Bergeron et al. “Lack of CT scanner in a rural emergency department increases inter-facility trans-

fers: a pilot study”. In: BMC Research Notes 10.1 (2017), p. 749. doi: 10.1186/s13104-017-3071-1.

[9] James Holmes et al. “Rate and Reasons for Repeat CT Scanning in Transferred Trauma Patients”. In:

The American surgeon 83 (May 2017), pp. 465–469. doi: 10.1177/000313481708300519.

[10] Harvard Health Publishing. Radiation risk from medical imaging. Website. 2021. url: https://www.

health.harvard.edu/cancer/radiation-risk-from-medical-imaging.

[11] How to Manage Your Medical Records. 2022. url: https://www.cmpa-acpm.ca/en/advice-publications/

browse-articles/2003/a-matter-of-records-retention-and-transfer-of-clinical-records.

[12] Jason McKenzie and Stacy Goergen. Computed Tomography (CT). 2017. url: https://www.insideradiology.

com.au/computed-tomography/.

[13] Ravi Varma. “Storage media for computers in radiology”. In: The Indian journal of radiology imaging

18 (Nov. 2008), pp. 287–9. doi: 10.4103/0971-3026.43838.

[14] Ontario Ministry of Health - Health Services Funding. https : / /www.health . gov . on . ca/ en/pro/

programs/ecfa/funding/hs funding.aspx.

[15] Andrew Reichman. “File storage costs less in the cloud than in-house”. In: Forrester Research, Cam-

bridge, MA (2011).

[16] Canadian Radio-television and Telecommunications Commission. Internet. Online. n.d. url: https :

//crtc.gc.ca/eng/internet/internet.htm.

[17] Tamas Linder. Data Compression and Source Coding I: Fundamentals of Rate Distortion Theory. Jan.

2023.

37

https://doi.org/10.1109/JSTSP.2020.3034501
https://doi.org/10.1117/1.JMI.5.3.036501
https://doi.org/10.1117/1.JMI.5.3.036501
https://doi.org/10.1007/s10278-008-9139-7
https://doi.org/10.4329/wjr.v8.i12.902
https://doi.org/10.1097/RTI.0000000000000140
https://doi.org/10.1001/jama.288.19.2405-JLT1120-2-3
https://doi.org/10.1001/jama.288.19.2405-JLT1120-2-3
https://doi.org/10.1186/s13104-017-3071-1
https://doi.org/10.1177/000313481708300519
https://www.health.harvard.edu/cancer/radiation-risk-from-medical-imaging
https://www.health.harvard.edu/cancer/radiation-risk-from-medical-imaging
https://www.cmpa-acpm.ca/en/advice-publications/browse-articles/2003/a-matter-of-records-retention-and-transfer-of-clinical-records
https://www.cmpa-acpm.ca/en/advice-publications/browse-articles/2003/a-matter-of-records-retention-and-transfer-of-clinical-records
https://www.insideradiology.com.au/computed-tomography/
https://www.insideradiology.com.au/computed-tomography/
https://doi.org/10.4103/0971-3026.43838
https://www.health.gov.on.ca/en/pro/programs/ecfa/funding/hs_funding.aspx
https://www.health.gov.on.ca/en/pro/programs/ecfa/funding/hs_funding.aspx
https://crtc.gc.ca/eng/internet/internet.htm
https://crtc.gc.ca/eng/internet/internet.htm


[18] Tamas Linder. Data Compression and Source Coding III: Scalar Quantization. Mar. 2023.

[19] Tamas Linder. Data Compression and Source Coding V: Transform Coding. Mar. 2023.

[20] G.K. Wallace. “The JPEG still picture compression standard”. In: IEEE Transactions on Consumer

Electronics 38.1 (1992), pp. xviii–xxxiv. doi: 10.1109/30.125072.

[21] Adam Gronowski. “Information Bottleneck Methods for Fairness and Privacy in Machine Learning”.

English. PhD thesis. 2022, p. 152. isbn: 9798358407466.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.

6980 [cs.LG].

[23] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the

IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[24] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a convolutional neural

network”. In: 2017 International Conference on Engineering and Technology (ICET). 2017, pp. 1–6.

doi: 10.1109/ICEngTechnol.2017.8308186.

[25] Iqbal Sarker. “Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learn-

ing Perspective”. In: SN Computer Science 2 (May 2021). doi: 10.1007/s42979-021-00535-6.

[26] Johannes Ballé et al. Variational image compression with a scale hyperprior. 2018. arXiv: 1802.01436

[eess.IV].

[27] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimization of nonlinear trans-

form codes for perceptual quality. 2016. arXiv: 1607.05006 [cs.IT].

[28] Keyan Ding et al. “Comparison of Full-Reference Image Quality Models for Optimization of Image

Processing Systems”. In: International Journal of Computer Vision 129.4 (Jan. 2021), pp. 1258–1281.

doi: 10.1007/s11263-020-01419-7.

[29] David Minnen, Johannes Ballé, and George Toderici. Joint Autoregressive and Hierarchical Priors for

Learned Image Compression. 2018. arXiv: 1809.02736 [cs.CV].

[30] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[31] G. Anthony Reina et al. “Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning

Semantic Segmentation”. In: Frontiers in Neuroscience 14 (2020). issn: 1662-453X. doi: 10.3389/fnins.

2020.00065.

[32] Zhou Wang and Alan C. Bovik. “Mean squared error: Love it or leave it? A new look at Signal Fidelity

Measures”. In: IEEE Signal Processing Magazine 26.1 (2009), pp. 98–117. doi: 10.1109/MSP.2008.

930649.

[33] Peter Ndajah et al. “SSIM image quality metric for denoised images”. In: Nov. 2010, pp. 53–57.

[34] Jim Nilsson and Tomas Akenine-Möller. Understanding SSIM. 2020. arXiv: 2006.13846 [eess.IV].

[35] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. Density Modeling of Images using a General-

ized Normalization Transformation. 2016. arXiv: 1511.06281 [cs.LG].

[36] Lu Lu. “Dying ReLU and Initialization: Theory and Numerical Examples”. In: Communications in

Computational Physics 28.5 (June 2020), pp. 1671–1706. doi: 10.4208/cicp.oa-2020-0165.

38

https://doi.org/10.1109/30.125072
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1007/s42979-021-00535-6
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1607.05006
https://doi.org/10.1007/s11263-020-01419-7
https://arxiv.org/abs/1809.02736
https://www.tensorflow.org/
https://doi.org/10.3389/fnins.2020.00065
https://doi.org/10.3389/fnins.2020.00065
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/MSP.2008.930649
https://arxiv.org/abs/2006.13846
https://arxiv.org/abs/1511.06281
https://doi.org/10.4208/cicp.oa-2020-0165


[37] Douglas A Reynolds et al. “Gaussian mixture models.” In: Encyclopedia of biometrics 741.659-663

(2009).

[38] V.K. Goyal. “Theoretical foundations of transform coding”. In: IEEE Signal Processing Magazine 18.5

(2001), pp. 9–21. doi: 10.1109/79.952802.

[39] Tamas Linder. Data Compression and Source Coding II: Lossless Data Compression. Feb. 2023.

[40] “High-resolution 3D abdominal segmentation with random patch network fusion”. In: Medical Image

Analysis 69 (2021), p. 101894. issn: 1361-8415. doi: https://doi.org/10.1016/j.media.2020.101894.

[41] George Toderici et al. Full Resolution Image Compression with Recurrent Neural Networks. 2017. arXiv:

1608.05148 [cs.CV].

[42] Salman Khan et al. “Transformers in Vision: A Survey”. In: ACM Comput. Surv. 54.10s (Sept. 2022).

issn: 0360-0300. doi: 10.1145/3505244.

39

https://doi.org/10.1109/79.952802
https://doi.org/https://doi.org/10.1016/j.media.2020.101894
https://arxiv.org/abs/1608.05148
https://doi.org/10.1145/3505244

	Problem Definition
	Engineering Impact
	Standards and Regulation
	Stakeholders and Triple Bottom Line
	Patients
	Practitioners
	Healthcare System

	Economic Analysis

	Background
	Data Compression
	Rate Distortion Theory
	Scalar Quantization
	Linear Transform Coding
	Nonlinear Transform Coding

	Neural Networks
	Artificial Neural Networks
	Convolutional Neural Networks

	Previous Work

	Solution
	Cost Function
	Training Algorithm
	Implementation Details
	Tools and Technology
	Dataset


	Solution Iterations
	Image Tiling for Computation Efficiency
	SSIM Distortion Measure for Improved Human Perception
	Regularization Techniques to Address Overfitting
	GDN Activation Function for Improved Image Processing
	Contrast Intensity Rescaling for Enhanced Image Quality
	Final Model Design and Network Architecture

	Testing and Results
	One-Dimensional Laplacian
	Handwritten Images
	CT Scans
	Results Discussion

	Future Work
	Improve Entropy Model
	Introduce Entropy Coding
	Improvements to Model Implementation

	Conclusion
	Appendix
	Nonlinear Transform Coding Class
	Laplacian Neural Network Architecture
	MNIST Neural Network Architecture
	CT Scan Neural Network Architecture


