

Exact Channel Simulation under Exponential Cost

Paper

Spencer Hill, Fady Alajaji, Tamás Linder

We extend results in channel simulation and exact sampling to a communication cost which is exponential in the codeword lengths.

Problem Definition

Exact Sampling

- Input: Distributions P,Q and shared randomness $\{U_i\}_{i\geq 1}\sim Q$
- Output: Index K such that $U_K \sim P$

Exact Channel Simulation

- Input: Joint distribution P_{XY} , shared randomness $\{U_i\}_{i\geq 1}\sim \mathsf{P}_Y$, and $x\sim \mathsf{P}_X$
- Output: Index K such that $U_K \sim \mathsf{P}_{Y|X}(\;\cdot\;\mid x)$

Typical goal: Minimize the expected message length $\mathbb{E}[l(\mathcal{C}(K))]$ when K is encoded by the uniquely decodable binary code \mathcal{C} .

Our question: What if we cared about a cost which is exponential in the message lengths? What is a lower bound on the one-shot communication cost, and can it be (almost) achieved?

Results and Bounds

We consider the Campbell cost [1] of order t:

$$L(t) = \frac{1}{t} \log(\mathbb{E}[2^{tl(\mathcal{C}(K)})]). \tag{1}$$

As $t \to 0$ in (1) we recover $\mathbb{E}[l(\mathcal{C}(K))]$. Akin to Shannon's noiseless coding theorem, Campbell [1] connected L(t) with the Rényi entropy of order $\alpha = \frac{1}{1+t}$ by showing that for a discrete source X,

$$H_{\alpha}(X) \leq L(t) < H_{\alpha}(X) + 1. \tag{2}$$

Result 1: Lower bound on any sampling algorithm

Let K be the output of any sampling algorithm between distributions P and Q. Then, with $\alpha = \frac{1}{1+t}$,

$$L(t) \ge D_{\frac{1}{\alpha}}(P||Q) + \frac{\alpha}{1-\alpha}\log(\alpha) - 1. \tag{3}$$

As $t \to 0$ in (3) (resp. $\alpha \to 1$) we recover the lower bound $D(P||Q) - \frac{1}{\ln 2} - 1 \le \mathbb{E}[l(\mathcal{C}(K))]$.

Result 2: Upper bounds via the Poisson functional representation

Let K be generated by the Poisson functional representation [2]: for $\{U_i\}_{i\geq 1}\sim Q$ and $\{T_i\}_{i\geq 1}$ a rate-one Poisson process, set

$$K = \mathop{\arg\min}_{i \geq 1} \frac{T_i}{\frac{\mathrm{d}P}{\mathrm{d}Q}(U_i)}. \tag{4}$$

Then, $U_K \sim P$ [2]. We show that, for any t>0 and $\epsilon>0$, there exists a uniquely decodable encoding of K such that

$$L(t) \le (1+\epsilon)D_{\frac{1+\epsilon(1-\alpha)}{\alpha}}(P||Q) + c(\alpha,\epsilon),\tag{5}$$

with $\alpha=\frac{1}{1+t}$ and $c(\alpha,\epsilon)$ a constant. When $Q=\mathsf{P}_Y$ and $P=\mathsf{P}_{Y|X}(\;\cdot\;|\;x)$, (5) upper bounds the exponential cost of channel simulation. If we instead encode K using the Elias omega code [3], for any $2/3<\alpha<1$ and $0<\epsilon\leq\frac{3\alpha-2}{2-2\alpha}$ we have

$$L(t) \le D_{\frac{2-\alpha}{\alpha}}(P||Q) + (1+\epsilon)\log(D(P||Q) + 1) + c(\epsilon), \tag{6}$$

with $c(\epsilon)$ a constant and $\alpha = \frac{1}{1+t}$. As $t \to 0$, (6) reduces to the upper bound of Harsha et al. [4], $\mathbb{E}[l(\mathcal{C}(K))] \leq D(P||Q) + (1+\epsilon)\log(|D||P) + 1 + c(\epsilon).$ Note that (6) is strictly greater than (5).

Numerical Examples

Bounds on L(t) for P and Q normal distributions.

The upper and lower bounds are tight within 5-10 bits, even for distributions that are far apart.

References

[1] L. L. Campbell, "A coding theorem and Rényi entropy," Information and control, vol. 8, no. 4, pp. 423-429, 1965.

[2] C. T. Li and A. E. Gamal, "Strong functional representation lemma and applications to coding theorems," in Proc. IEEE International Symposium on Information Theory (ISIT), 2017, pp. 589-593.

[3] P. Elias, "Universal codeword sets and representations of the integers," IEEE Transactions on Information Theory, vol. 21, no. 2, pp.194-203, 2003. [4] P. Harsha, R. Jain, D. McAllester, and J. Radhakrishnan, "The communication complexity of correlation," IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 438-449, 2010.