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We extend results in channel simulation and exact sampling to a communication cost which is exponential in the codeword lengths.

Problem Definition

Exact Sampling

• Input: Distributions 𝑃 , 𝑄 and shared

randomness {𝑈𝑖}𝑖≥1 ∼ 𝑄

•Output: Index 𝐾 such that 𝑈𝐾 ∼ 𝑃

Exact Channel Simulation

• Input: Joint distribution P𝑋𝑌 , shared

randomness {𝑈𝑖}𝑖≥1 ∼ P𝑌 , and 𝑥 ∼ P𝑋

•Output: Index 𝐾 such that 𝑈𝐾 ∼ P𝑌 ∣𝑋( ⋅ ∣ 𝑥)

Typical goal: Minimize the expected message length 𝔼[𝑙(𝒞(𝐾))] when 𝐾 is encoded by the uniquely

decodable binary code 𝒞.
Our question: What if we cared about a cost which is exponential in the message lengths? What is a

lower bound on the one-shot communication cost, and can it be (almost) achieved?
Numerical Examples

(a) 𝑃 = 𝒩(0, 1) and 𝑄 = 𝒩(1, 1). (b) 𝑃 = 𝒩(0, 1) and 𝑄 = 𝒩(5, 1). (c) 𝑃 = 𝒩(0, 1) and 𝑄 = 𝒩(10, 1).

Bounds on 𝐿(𝑡) for 𝑃 and 𝑄 normal distributions.

The upper and lower bounds are tight within 5-10 bits, even for distributions that are far apart.

Results and Bounds
We consider the Campbell cost [1] of order 𝑡:

𝐿(𝑡) = 1
𝑡 log(𝔼[2𝑡𝑙(𝒞(𝐾))]). (1)

As 𝑡 → 0 in (1) we recover 𝔼[𝑙(𝒞(𝐾))]. Akin to Shannon’s noiseless coding theorem, Campbell [1]

connected 𝐿(𝑡) with the Rényi entropy of order 𝛼 = 1
1+𝑡 by showing that for a discrete source 𝑋,

𝐻𝛼(𝑋) ≤ 𝐿(𝑡) < 𝐻𝛼(𝑋) + 1. (2)
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Result 1: Lower bound on any sampling algorithm

Let 𝐾 be the output of any sampling algorithm between distributions 𝑃 and 𝑄. Then, with 𝛼 = 1
1+𝑡,

𝐿(𝑡) ≥ 𝐷1
𝛼
(𝑃 ||𝑄) + 𝛼

1 − 𝛼 log(𝛼) − 1. (3)

As 𝑡 → 0 in (3) (resp. 𝛼 → 1) we recover the lower bound 𝐷(𝑃 ||𝑄) − 1
ln 2 − 1 ≤ 𝔼[𝑙(𝒞(𝐾))].

Result 2: Upper bounds via the Poisson functional representation

Let 𝐾 be generated by the Poisson functional representation [2]: for {𝑈𝑖}𝑖≥1 ∼ 𝑄 and { 𝑇𝑖 } 𝑖≥1 a

rate-one Poisson process, set

𝐾 = argmin
𝑖≥1

𝑇𝑖
d𝑃
d𝑄(𝑈𝑖)

. (4)

Then, 𝑈𝐾 ∼ 𝑃 [2]. We show that, for any 𝑡 > 0 and 𝜖 > 0, there exists a uniquely decodable encoding of

𝐾 such that

𝐿(𝑡) ≤ (1 + 𝜖)𝐷1+𝜖(1−𝛼)
𝛼

(𝑃 ||𝑄) + 𝑐(𝛼, 𝜖), (5)

with 𝛼 = 1
1+𝑡 and 𝑐(𝛼, 𝜖) a constant. When 𝑄 = P𝑌 and 𝑃 = P𝑌 ∣𝑋( ⋅ ∣ 𝑥), (5) upper bounds the

exponential cost of channel simulation. If we instead encode 𝐾 using the Elias omega code [3], for any

2/3 < 𝛼 < 1 and 0 < 𝜖 ≤ 3𝛼−2
2−2𝛼 we have

𝐿(𝑡) ≤ 𝐷2−𝛼
𝛼

(𝑃 ||𝑄) + (1 + 𝜖) log(𝐷(𝑃 ||𝑄) + 1) + 𝑐(𝜖), (6)

with 𝑐(𝜖) a constant and 𝛼 = 1
1+𝑡. As 𝑡 → 0, (6) reduces to the upper bound of Harsha et al. [4],

𝔼[𝑙(𝒞(𝐾))] ≤ 𝐷(𝑃 ||𝑄) + (1 + 𝜖) log((𝐷||𝑃 ) + 1) + 𝑐(𝜖). Note that (6) is strictly greater than (5).
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