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Problem Definition

Exact Sampling Exact Channel Simulation

* Input: Distributions P, Q) and shared * Input: Joint distribution P, shared

randomness {U,};~; ~ @ randomness {U,};,~; ~ Py, and x ~ Py

» Output: Index K such that U, ~ P * Output: Index K such that Ug ~ Py x( - | z)

{Ui}i>1 ~ Q@ {U;}i>1 ~ Py
K K
Encoder - > Decoder » Uxg ~ P r —» Encoder - > Decoder —>» Ug ~ Py| X( . ] a:)
Sender Receiver Sender Receiver

Typical goal: Minimize the expected message length E[I/(C(K))] when K is encoded by the uniquely
decodable binary code €.
Our question: What if we cared about a cost which is exponential in the message lengths? What is a

lower bound on the one-shot communication cost, and can it be (almost) achieved?

Results and Bounds

We consider the Campbell cost [1] of order ¢:
L(t) = %Iog([E[Qﬂ(@(m)]). (1)

Ast — 0in (1) we recover E[I(C(K))]. Akin to Shannon's noiseless coding theorem, Campbell [1]

connected L(t) with the Rényi entropy of order a = %H by showing that for a discrete source X,

H (X) < L(t) < H (X) + 1. (2)
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Result 1: Lower bound on any sampling algorithm

Let K be the output of any sampling algorithm between distributions P and Q. Then, with o = ,

- log(a) — 1. (3)

Y

L(t) = Dy(PIIQ) +

Ast — 0in (3) (resp. a — 1) we recover the lower bound D(P||Q) — =5 — 1 < E[l(C(K))].
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We extend results in channel simulation and exact sampling to a communication cost which is exponential in the codeword lengths.

Result 2: Upper bounds via the Poisson functional representation

Let K be generated by the Poisson functional representation [2]: for {U,},~; ~Q and {7} },-, a

rate-one Poisson process, set

T
K = argmin . (4)
2 ()

Then, U, ~ P [2]. We show that, for any ¢ > 0 and ¢ > 0, there exists a uniquely decodable encoding of

K such that
L(t) < (1 +€) Do (Pl|Q) + c(a; €), (5)

with o = 1= and ¢(«a, €) a constant. When Q = Py and P = Py x( - | =), (5) upper bounds the

exponential cost of channel simulation. If we instead encode K using the Elias omega code [3], for any

2/3<a<land0<e<222we have

L(t) < Doo(P]|Q) + (1 + €) log(D(P[|Q) + 1) + c(e), (6)

with c(e) a constant and a = . As ¢ — 0, (6) reduces to the upper bound of Harsha et al. [4],

El(C(K))] < D(P||Q) + (1+¢€)log((D]|P)+ 1)+ c(e). Note that (6) is strictly greater than (5).

Numerical Examples
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Bounds (bits)
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(@) P=N(0,1)and Q = N (1,1). (b) P=N(0,1)and Q@ = N(5,1). () P=N(0,1)and Q = N(10,1).

Bounds on L(t) for P and @ normal distributions.

The upper and lower bounds are tight within 5-10 bits, even for distributions that are far apart.
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