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Problem Definition

Compress digital images with minimal distortion using 

Artificial Neural Networks. The goal is to improve on current industry 

standards for lossy compression.

Application
Compress CT Scans used for the detection of cancer lesions. Better 

compression would improve patient record storage and access to 

remote healthcare, among other benefits.

Problem Definition and Application



Triple Bottom Line Analysis
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Economic1

Environmental

Cost savings for hospitals in the form of storage costs.

Reduced storage and transmission needs lead to reduced power 
consumption.

[1] John Halamka, “The Cost of Storing Patient Records” (2018)

Social
Enable CT scans to be more accessible for both patients and 

practitioners (i.e. Rural locations).

Economic1
Cost savings for hospitals in the form of storage costs.

Environmental
Reduced storage and transmission needs lead to reduced power 

consumption.



Stakeholders
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Practitioners
Makes CT Scans available in 

remote/rural locations.

Technologists
Reduces processing time for 

technologists taking CT scans.

Healthcare System3

Reduces cost of storage for CT 
scans.

Patients1,2
Reduces number of 

misdiagnosis for safety.

[1] Singh. S, “Effect of CT Quality on Lung Module Detection and Management”, Journal of the American College of Radiology (2014)
[2] Smith-Bindman R. “Radiation Dose Associated with Common  CT Examinations and Associated Lifetime. Risk of Cancer”, JAMA (2013)
[3] J. Halamka, “The Cost of Storing Patient Records” , GeekDoctor (2011)



Data Compression
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Compression Rate

Distortion 

Image Source: “NIH Clinical Center Releases Dataset of 32,000 CT Images”, NIH (2018)

Lossy data compression aims to minimize the expected distortion 

between the original and reconstructed source

𝐷(𝑄) = 𝐸[𝑑(𝑋, 𝑄(𝑋))]

for a distance metric d 1

[1] J. Cheng, “Channel Optimized Quantization of Images Over Binary Channels with Memory,” Queen’s University Masters thesis (1997)



Linear Transform Coding

• Uses orthogonal transformation A, i.e. 𝐀𝐓 = 𝐀-𝟏

• Scalar quantizer 𝑄/ is the map 𝑄/ ∶ ℝ → 𝒞/ for codebook

𝒞/ = y0, … , y1 ⊂ ℝ
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[1] J. Cheng, “Channel Optimized Quantization of Images Over Binary Channels with Memory,” Queen’s University Masters thesis (1997)



Motivation
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Nonlinear Transform Coding 
quantizer bins

• Linear transform coding maps the source to latent 
space prior to quantization

• Orthogonal matrix transforms impose linear structure on quantized 
bins in latent space, and Standard Non-Linear Transforms were 
previously not computationally feasible in higher dimensions

• Neural networks can arbitrarily approximate any continuous function

Image source: J. Ballé, “Nonlinear Transform Coding” (2021)

Linear Transform Coding 
quantizer bins



Solution – Overview
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Goal: Implement Neural Network-based Analysis and 

Synthesis Transforms



System Design

Perform Stochastic Gradient Descent on cost function

for analysis transform 𝑔𝑎 𝒙 , synthesis transform 𝑔𝑠 𝒙 , 𝑃 an entropy 

model of the quantized latent vector, and 𝜆 used for 

Lagrangian Optimization
9

1

[1] J. Ballé, “Nonlinear Transform Coding” (2021)



Entropy Modelling

• Must choose a continuous entropy model to estimate and 
minimize the rate of the quantized latent vector
• Common choices are fixed-mode entropy models, including 

the Gaussian and Laplacian Distributions1
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[1] J. Ballé, “Nonlinear Transform Coding” (2021)

Estimated entropy rates and bit rates of 
images during model training

Normal and Laplacian 
Distributions



Uniform Noise Perturbations

• Quantization approximated as Uniform −1
2 ,

1
2 noise to make 

𝐿𝑁𝑇𝐶 differentiable1

• Cost function becomes
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[1] J. Ballé, “Nonlinear Transform Coding” (2021)



Neural Network Architecture
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• Convolution Layers: Capture the spatial relationships and local 
patterns present in image data

• Max Pooling Layers: Reduce spatial dimensions (down-sample) and 
aids in translation invariance and robustness to noise

• Fully Connected Layer: Maps the image to a lower-dimension latent 
space for quantization (compression)

Image Source: Tanesh Balodi, “Convolutional Neural Network (CNN)”, AnalyticSteps (2021)



Model Testing – 1-D Laplacian Distribution
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Analysis and synthesis transforms visualized in 2-D

Reconstructed distribution using Quantizers

Reconstructed distribution using perturbations

Original distribution



Model Iterations – Blocks
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• Large image sizes can be 

computationally impractical for 

neural network training.

• The number of trainable parameters 

scales quadratically with the input 

dimensions

• Our 64x64 block model has 4.5

million trainable parameters to 

optimize



Model Iterations – Blocks
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Model Iterations – SSIM Distortion Measure
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• Problem: MSE only measures difference between pixel values 
and does not consider the spatial arrangement or perceptual 
differences between images.

• Structural Similarity Index Measure (SSIM): A method to 
evaluate the similarity between two images that corresponds 
with human perception of image quality

Image Source: P. Ndajah , “SSIM Image Quality Metric for Denoised Images”, WSEAS (2010)

ORIGINAL



Model Iterations - Overfitting
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• Overfitting: When a model becomes overly complex and fits the training 
data too closely, leading to poor performance on new, unseen data.

SS
IM

SS
IM
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te

• Solution:
– Dropout layers: Randomly drop neurons during training
– Weight decay: Penalize large weights
– Diverse training set: expose the model to wider range of images



Model Iterations – Activation Functions
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GDN 𝑥 =
𝑥

𝛽 + ∑!(𝑥!" ⋅ 𝜔!)

• Activation Function: A function that determines the output of a 
neural network node based on its input

• Rectified Linear Unit (ReLU): Introduces non-linearity and helps 
the network to learn more complex features.

• Generalized Divisive Normalization (GDN): Improves the stability 
and robustness of the network by normalizing outputs to have 
zero mean and unit variance1

ReLU 𝑥 = max 𝑥, 0

[1] J. Ballé, Efficient Nonlinear Transforms for Lossy Image Compression (2018)



Model Iterations – Contrast  Intensity Rescaling
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Original Reconstructed Rescaled

𝐼#$%&'($) 𝑖, 𝑗 =
𝐼*,! − 𝐼,-.
𝐼,'/ − 𝐼,-.

⋅ 𝑝00 − 𝑝1 + 𝑝1

Let 𝐼*,! be the intensity value of the pixel located at (𝑖, 𝑗). Further, let 𝑝1 and 
𝑝00 represent the 1st and 99th percentiles of the intensity distribution of the 
original image. Then we can rescale the reconstructed image as follows: 

• Problem: Activation functions can compress the dynamic 
range of the image pixels resulting in loss of contrast1

• Contrast Rescaling: 

` `

[1] Y. Shik Moon, “Low Contrast Image Enhancement Using Convolutional Neural Network”, ASTES (2019)



Quantitative Results
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• Note: Our method is trained on 

and optimized for SSIM

• Comparison: JPEG significantly 

outperforms our system using 

the test distortion measure of 

Peak Signal-to-Noise Ratio 

(PSNR)

• 𝑃𝑆𝑁𝑅 = 10 log10
2552

𝑀𝑆𝐸
Rate Distortion graphs of our method and 

JPEG on the CT Scan dataset



Qualitative Results
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Original Our Method (0.77 BPP)JPEG (0.77 BPP)



Limitations and Possible Improvements
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Entropy Model
Use mixture distributions that fit to the data or models.  

Computational Resources
More computing resources à Train the model on whole image.

Testing Time
Tune hyperparameters and model architecture.

Entropy Rate
Use techniques such as Huffman or arithmetic coding.


