

Data Compression via Nonlinear Transforms using Artificial Neural Networks

Group T4: Spencer Hill, Wyllie Schenkman, Jordan Curnew, Mark Benhamu

Supervisor: Dr. Tamas Linder

Final Presentation

Problem Definition and Application

Problem Definition

Compress digital images with minimal distortion using

Artificial Neural Networks. The goal is to improve on current industry standards for lossy compression.

Application

Compress *CT Scans* used for the detection of cancer lesions. Better compression would improve patient record storage and access to remote healthcare, among other benefits.

Triple Bottom Line Analysis

Social

Enable CT scans to be more accessible for both patients and practitioners (i.e. Rural locations).

Economic¹

Cost savings for hospitals in the form of storage costs.

Environmental

Reduced storage and transmission needs lead to reduced power consumption.

Stakeholders

Patients^{1,2}

Reduces number of misdiagnosis for safety.

Practitioners

Makes CT Scans available in remote/rural locations.

Technologists

Reduces processing time for technologists taking CT scans.

Healthcare System³

Reduces cost of storage for CT scans.

Data Compression

Lossy data compression aims to minimize the expected distortion

between the original and reconstructed source

$$D(Q) = E[d(X, Q(X))]$$

for a distance metric d^{1}

Distortion

Compression Rate

Linear Transform Coding

- Uses **orthogonal** transformation A, i.e. $A^T = A^{-1}$
- Scalar quantizer Q_i is the map $Q_i: \mathbb{R} \to \mathcal{C}_i$ for codebook

Motivation

- Linear transform coding maps the source to latent space prior to quantization
- Orthogonal matrix transforms impose linear structure on quantized bins in latent space, and Standard Non-Linear Transforms were previously not computationally feasible in higher dimensions
- Neural networks can arbitrarily approximate any continuous function

Nonlinear Transform Coding quantizer bins

Solution – Overview

Goal: Implement Neural Network-based Analysis and Synthesis Transforms

System Design

Perform Stochastic Gradient Descent on cost function

$$L_{NTC} = \mathbb{E}_x \left[-\log(P(\lfloor g_a(\boldsymbol{x}) \rceil) + \lambda d(\boldsymbol{x}, g_s(\lfloor g_a(\boldsymbol{x}) \rceil)) \right]^{1}$$

for analysis transform $g_a(x)$, synthesis transform $g_s(x)$, P an entropy model of the quantized latent vector, and λ used for

Lagrangian Optimization

Entropy Modelling

- Must choose a continuous entropy model to estimate and minimize the rate of the quantized latent vector
- Common choices are fixed-mode entropy models, including the Gaussian and Laplacian Distributions¹

Estimated entropy rates and bit rates of images during model training

Normal and Laplacian
Distributions

Uniform Noise Perturbations

• Quantization approximated as Uniform $\left(\frac{-1}{2}, \frac{1}{2}\right)$ noise to make

Cost function becomes

$$L_{NTC} = \mathbb{E}_x[-\log(P(g_a(\boldsymbol{x}) + \Delta) + \lambda d(\boldsymbol{x}, g_s(g_a(\boldsymbol{x}) + \Delta))]$$

Neural Network Architecture

- Convolution Layers: Capture the spatial relationships and local patterns present in image data
- Max Pooling Layers: Reduce spatial dimensions (down-sample) and aids in translation invariance and robustness to noise
- Fully Connected Layer: Maps the image to a lower-dimension latent space for quantization (compression)

Model Testing – 1-D Laplacian Distribution

Reconstructed distribution using perturbations

Reconstructed distribution using Quantizers

Analysis and synthesis transforms visualized in 2-D

Model Iterations – Blocks

- Large image sizes can be computationally impractical for neural network training.
- The number of trainable parameters
 scales quadratically with the input
 dimensions
- Our 64x64 block model has 4.5
 million trainable parameters to
 optimize

Model Iterations – Blocks

- Large image sizes can be computationally impractical for neural network training.
- The number of trainable parameters
 scales quadratically with the input
 dimensions
- Our 64x64 block model has 4.5
 million trainable parameters to
 optimize

Model Iterations – SSIM Distortion Measure

- **Problem**: MSE only measures difference between pixel values and does not consider the spatial arrangement or perceptual differences between images.
- Structural Similarity Index Measure (SSIM): A method to evaluate the similarity between two images that corresponds with human perception of image quality

Model Iterations - Overfitting

 Overfitting: When a model becomes overly complex and fits the training data too closely, leading to poor performance on new, unseen data.

Solution:

- Dropout layers: Randomly drop neurons during training
- Weight decay: Penalize large weights
- Diverse training set: expose the model to wider range of images

Model Iterations – Activation Functions

- Activation Function: A function that determines the output of a neural network node based on its input
- Rectified Linear Unit (ReLU): Introduces non-linearity and helps the network to learn more complex features.
- Generalized Divisive Normalization (GDN): Improves the stability and robustness of the network by normalizing outputs to have zero mean and unit variance¹

ReLU(x) = max(x,0)
$$GDN(x) = \frac{x}{\sqrt{\beta + \sum_{j} (x_j^2 \cdot \omega_j)}}$$

Model Iterations – Contrast Intensity Rescaling

- **Problem**: Activation functions can compress the range of the image pixels resulting in loss of contrast¹
- Contrast Rescaling:

Let $I_{i,j}$ be the intensity value of the pixel located at (i,j). Further, let p_1 and p_{99} represent the 1st and 99th percentiles of the intensity distribution of the original image. Then we can rescale the reconstructed image as follows:

$$I_{\text{rescaled}}(i,j) = \frac{I_{i,j} - I_{\min}}{I_{\max} - I_{\min}} \cdot (p_{99} - p_1) + p_1$$

Quantitative Results

Rate Distortion graphs of our method and IPEG on the CT Scan dataset

- Note: Our method is trained on and optimized for SSIM
- Comparison: JPEG significantly outperforms our system using the test distortion measure of Peak Signal-to-Noise Ratio (PSNR)

•
$$PSNR = 10 \log_{10} \frac{255^2}{MSE}$$

Qualitative Results

JPEG (0.77 BPP) Original Our Method (0.77 BPP)

Limitations and Possible Improvements

Entropy Model

Use mixture distributions that fit to the data or models.

Computational Resources

More computing resources \rightarrow Train the model on whole image.

Testing Time

Tune hyperparameters and model architecture.

Entropy Rate

Use techniques such as Huffman or arithmetic coding.