Exact Channel Simulation under Exponential Cost

Spencer Hill

Queen's University, Canada

October 22, 2025

S. Hill October 22, 2025 1/31

Joint work with

Tamás Linder

Fady Alajaji

Queen's University

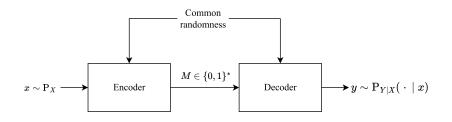
S. Hill October 22, 2025 2/31

Outline

- What is channel simulation?
- 2 Interesting applications
- 3 Channel simulation algorithms and performance
- Exponential (Campbell) cost
- Our results

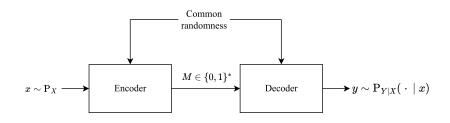
S. Hill October 22, 2025 3/31

Channel Simulation



S. Hill October 22, 2025 4/31

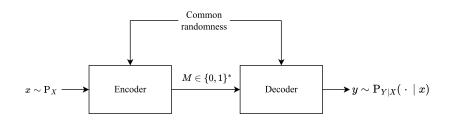
Channel Simulation



• Use noiseless channel to simulate noisy channel $X \to Y$

S. Hill October 22, 2025 4/31

Channel Simulation



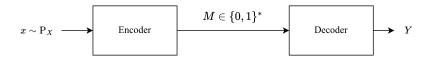
- Use noiseless channel to simulate noisy channel $X \to Y$
- When the goal is to efficiently communicate M, one can achieve

$$\mathbb{E}|M| \approx I(X;Y)$$
 bits

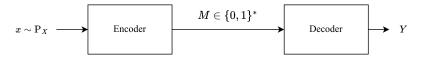
S. Hill October 22, 2025

Why Care?

S. Hill October 22, 2025 5/31

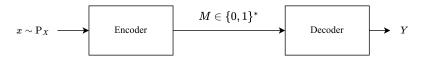


S. Hill October 22, 2025



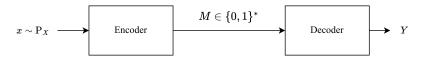
• The encoder encodes the block (X_1, \ldots, X_n)

S. Hill October 22, 2025

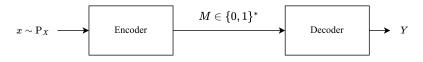


- The encoder encodes the block (X_1, \ldots, X_n)
- Decoder reconstructs (Y_1, \ldots, Y_n)

S. Hill October 22, 2025

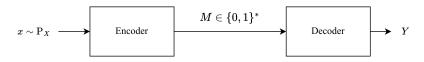


- The encoder encodes the block (X_1, \ldots, X_n)
- Decoder reconstructs (Y_1, \ldots, Y_n)
- Distortion: $D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(X_i, Y_i)]$



- The encoder encodes the block (X_1, \ldots, X_n)
- Decoder reconstructs (Y_1, \ldots, Y_n)
- Distortion: $D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(X_i, Y_i)]$
- Rate: $R = \frac{1}{n}\mathbb{E}|M|$ (expected message length)

S. Hill October 22, 2025

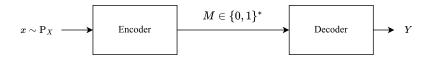


- The encoder encodes the block (X_1, \ldots, X_n)
- Decoder reconstructs (Y_1, \ldots, Y_n)
- Distortion: $D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(X_i, Y_i)]$
- Rate: $R = \frac{1}{n}\mathbb{E}|M|$ (expected message length)
- Asymptotically $(n \to \infty)$ optimal performance

$$R(D) = \min_{\mathbf{P}_{Y|X} : \mathbb{E}[d(X,Y)] \le D} I(X;Y).$$

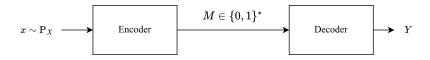
6/31

S. Hill October 22, 2025



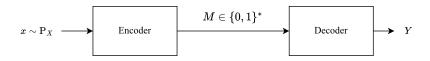
lacksquare Quantizer Q

S. Hill October 22, 2025



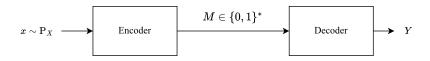
- lacktriangledown Quantizer Q
- ② Source distribution $\hat{P} = Q_{\#}P$

S. Hill October 22, 2025



- lacktriangledown Quantizer Q
- ② Source distribution $\hat{P} = Q_{\#}P$
- **3** Lossless source code $K_{\hat{P}}$

S. Hill October 22, 2025

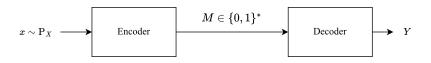


- lacktriangledown Quantizer Q
- ② Source distribution $\hat{P} = Q_{\#}P$
- **3** Lossless source code $K_{\hat{P}}$

The scheme is then:

$$\bullet \ M = K_{\hat{P}} \circ Q$$

S. Hill October 22, 2025



- Quantizer Q
- ② Source distribution $\hat{P} = Q_{\#}P$
- **3** Lossless source code $K_{\hat{P}}$

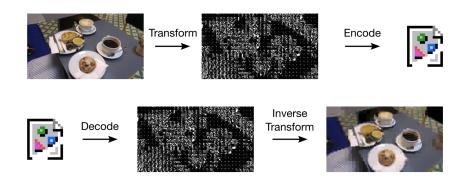
The scheme is then:

$$\bullet \ M = K_{\hat{\mathcal{D}}} \circ Q$$

•
$$Y = K_{\hat{P}}^{-1}(M)$$

S. Hill October 22, 2025

Transform Coding (JPEG)



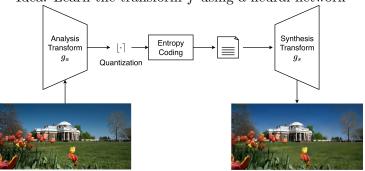
Usual transform: $Q \circ f$; for JPEG f is the discrete cosine transform

S. Hill October 22, 2025

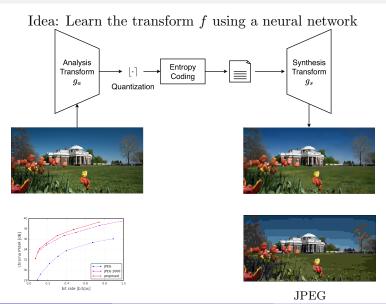
Idea: Learn the transform f using a neural network

S. Hill October 22, 2025 9/31

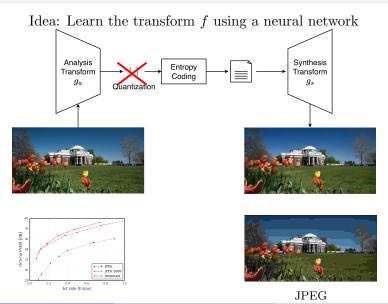
Idea: Learn the transform f using a neural network



S. Hill October 22, 2025 9/31

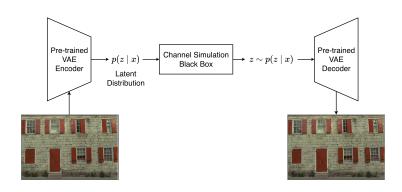


S. Hill



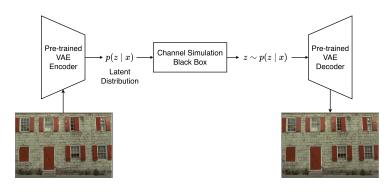
S. Hill October 22, 2025

Neural Compression with Channel Simulation



S. Hill October 22, 2025 10 / 31

Neural Compression with Channel Simulation



Fully differentiable end-to-end system!

S. Hill October 22, 2025 10 / 31

• Realizing the optimal compression channel in lossy source coding

S. Hill October 22, 2025 11/31

- Realizing the optimal compression channel in lossy source coding
- Rate-distortion-perception tradeoff

S. Hill October 22, 2025 11/31

- Realizing the optimal compression channel in lossy source coding
- Rate-distortion-perception tradeoff
- Compression via implicit neural representation

October 22, 2025 11/31

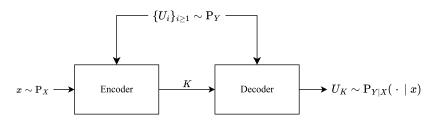
- Realizing the optimal compression channel in lossy source coding
- Rate-distortion-perception tradeoff
- Compression via implicit neural representation
- Local differential privacy

S. Hill October 22, 2025 11/31

- Realizing the optimal compression channel in lossy source coding
- Rate-distortion-perception tradeoff
- Compression via implicit neural representation
- Local differential privacy
- Federated learning, ...

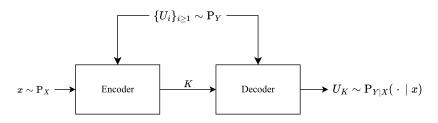
S. Hill October 22, 2025 11/31

S. Hill October 22, 2025 12/31



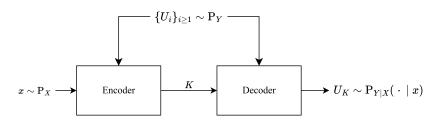
• Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$

S. Hill October 22, 2025 12/31



- Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$
- Transmit index K such that $U_K \sim P_{Y|X}$

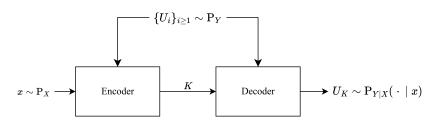
S. Hill October 22, 2025 12/31



- Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$
- Transmit index K such that $U_K \sim P_{Y|X}$
- Sampling: for sampling from general P given access to sequence from Q, one can achieve

$$\mathbb{E}|M| \approx D(P||Q)$$
 bits

October 22, 2025 12/31



- Common randomness is i.i.d. sequence $\{U_i\}_{i\geq 1} \sim P_Y$
- Transmit index K such that $U_K \sim P_{Y|X}$
- Sampling: for sampling from general P given access to sequence from Q, one can achieve

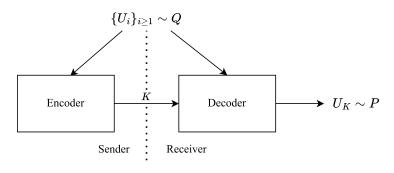
$$\mathbb{E}|M| \approx D(P||Q)$$
 bits

 \bullet Sampling can simulate $X \to Y$ with communication cost

$$\mathbb{E}|M| \approx \mathbb{E}_X[D(P_{Y|X}(\cdot \mid X) \mid\mid P_Y)] = I(X;Y)$$
 bits

S. Hill October 22, 2025 12/31

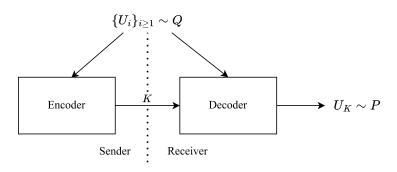
Exact Sampling



Key Questions:

S. Hill October 22, 2025 13/31

Exact Sampling

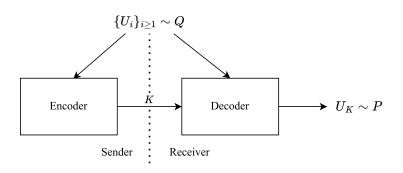


Key Questions:

• How can we choose K such that $U_K \sim P$ exactly?

S. Hill October 22, 2025 13/31

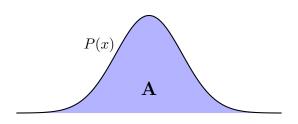
Exact Sampling



Key Questions:

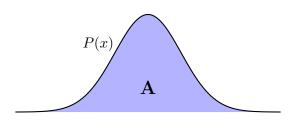
- How can we choose K such that $U_K \sim P$ exactly?
- For any sampling algorithm, $D(P||Q) \leq \mathbb{E}[|M|]$. How close can we get to D(P||Q)?

S. Hill October 22, 2025 13/31



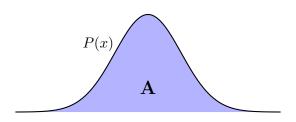
• Fact: $(x, y) \sim \text{Unif}(A) \implies x \sim P$.

S. Hill October 22, 2025 14/31



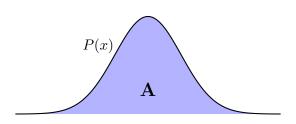
- Fact: $(x,y) \sim \text{Unif}(A) \implies x \sim P$.
- Algorithmic Interpretation: If samples U_k are drawn uniformly, at each stage accept sample U_k with probability $P(U_k)$.

October 22, 2025 14/31



- Fact: $(x,y) \sim \text{Unif}(A) \implies x \sim P$.
- Algorithmic Interpretation: If samples U_k are drawn uniformly, at each stage accept sample U_k with probability $P(U_k)$.
- For Q not uniform, accept U_k with probability $\gamma \frac{\mathrm{d}P}{\mathrm{d}Q}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{\mathrm{d}P}{\mathrm{d}Q}(u) \leq 1$ for all u.

S. Hill October 22, 2025 14/31



- Fact: $(x,y) \sim \text{Unif}(A) \implies x \sim P$.
- Algorithmic Interpretation: If samples U_k are drawn uniformly, at each stage accept sample U_k with probability $P(U_k)$.
- For Q not uniform, accept U_k with probability $\gamma \frac{dP}{dQ}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{\mathrm{d}P}{\mathrm{d}Q}(u) \leq 1$ for all u.

RS:
$$\mathbb{E}[|M|] \approx D_{\infty}(P||Q) \gg D(P||Q)$$
.

October 22, 2025 14/31

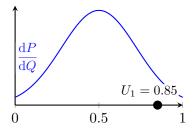
• Rejection sampling: Accept U_k with probability $\gamma \frac{\mathrm{d}P}{\mathrm{d}Q}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{\mathrm{d}P}{\mathrm{d}Q}(u) \leq 1$ for all u.

S. Hill October 22, 2025 15/31

- Rejection sampling: Accept U_k with probability $\gamma \frac{dP}{dQ}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{dP}{dQ}(u) \leq 1$ for all u.
- Greedy rejection sampling: Accept U_k with probability $f_k(U_k)$, for function f_k which maximizes the acceptance probability at stage k under the condition that the scheme is exact.

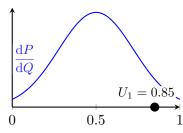
S. Hill October 22, 2025 15 / 31

- Rejection sampling: Accept U_k with probability $\gamma \frac{dP}{dO}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{dP}{dQ}(u) \le 1$ for all u.
- Greedy rejection sampling: Accept U_k with probability $f_k(U_k)$, for function f_k which maximizes the acceptance probability at stage k under the condition that the scheme is exact.



Rejection sampling

$$\mathbb{P}(Accept) = \gamma \frac{dP}{dQ}(U_1) = 0.275$$



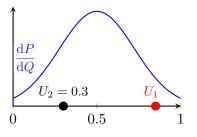
Greedy rejection sampling

$$\mathbb{P}(\text{Accept}) = \gamma \frac{dP}{dQ}(U_1) = 0.275 \qquad \mathbb{P}(\text{Accept}) = \left(\frac{dP}{dQ}(U_1) - 0\right)/1 = 0.5$$

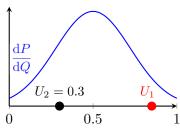
15/31

S. Hill October 22, 2025

- Rejection sampling: Accept U_k with probability γ^{dP}/_{dQ}(U_k),
 γ > 0 s.t. γ^{dP}/_{dQ}(u) ≤ 1 for all u.
 Greedy rejection sampling: Accept U_k with probability f_k(U_k)
- Greedy rejection sampling: Accept U_k with probability $f_k(U_k)$, for function f_k which maximizes the acceptance probability at stage k under the condition that the scheme is exact.



Rejection sampling

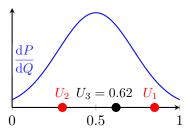


Greedy rejection sampling

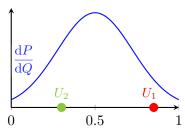
$$\mathbb{P}(\text{Accept}) = \gamma \frac{dP}{dQ}(U_2) = 0.67 \quad \mathbb{P}(\text{Accept}) = \frac{1}{0.255} \left(\frac{dP}{dQ}(U_2) - 1 \right) = 0.89$$

S. Hill October 22, 2025 15/31

- Rejection sampling: Accept U_k with probability $\gamma \frac{dP}{dQ}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{dP}{dQ}(u) \leq 1$ for all u.
- Greedy rejection sampling: Accept U_k with probability $f_k(U_k)$, for function f_k which maximizes the acceptance probability at stage k under the condition that the scheme is exact.



Rejection sampling

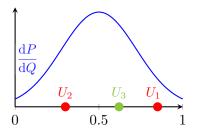


Greedy rejection sampling

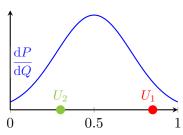
$$\mathbb{P}(Accept) = \gamma \frac{\mathrm{d}P}{\mathrm{d}Q}(U_2) = 0.87$$

S. Hill

- Rejection sampling: Accept U_k with probability $\gamma \frac{dP}{dQ}(U_k)$, $\gamma > 0$ s.t. $\gamma \frac{dP}{dQ}(u) \leq 1$ for all u.
- Greedy rejection sampling: Accept U_k with probability $f_k(U_k)$, for function f_k which maximizes the acceptance probability at stage k under the condition that the scheme is exact.



Rejection sampling



Greedy rejection sampling

15/31

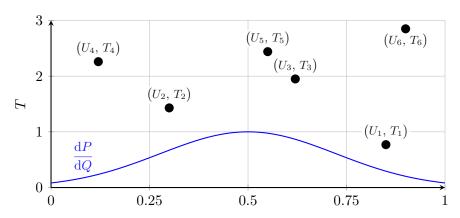
GRS: $\mathbb{E}[|M|] \le D(P||Q) + \log_2(D(P||Q) + 1) + 4$

S. Hill October 22, 2025

For $\{T_i\}_{i\geq 1}$ a rate-one Poisson process, choose $K = \arg\min_{i\geq 1} \frac{T_i}{\frac{\mathrm{d}P}{\mathrm{d}Q}(U_i)}$, Li and El-Gamal (2018).

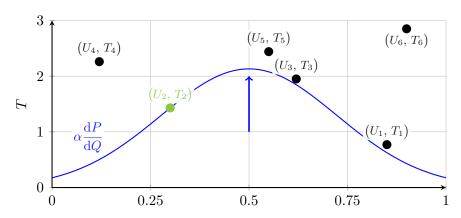
S. Hill October 22, 2025 16/31

For $\{T_i\}_{i\geq 1}$ a rate-one Poisson process, choose $K=\arg\min_{i\geq 1}\frac{T_i}{\frac{\mathrm{d}P}{\mathrm{d}Q}(U_i)}$, Li and El-Gamal (2018).



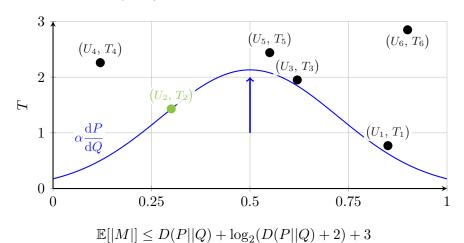
S. Hill October 22, 2025

For $\{T_i\}_{i\geq 1}$ a rate-one Poisson process, choose $K=\arg\min_{i\geq 1}\frac{T_i}{\frac{\mathrm{d}P}{\mathrm{d}Q}(U_i)}$, Li and El-Gamal (2018).



S. Hill October 22, 2025

For $\{T_i\}_{i\geq 1}$ a rate-one Poisson process, choose $K = \arg\min_{i\geq 1} \frac{T_i}{\frac{\mathrm{d}P}{\mathrm{d}Q}(U_i)}$, Li and El-Gamal (2018).



S. Hill October 22, 2025

Our Setup: Exponential Cost and Rényi's entropy

• The previous results are for the expected message length (number of bits) $\mathbb{E}|M|$.

S. Hill October 22, 2025 17/31

Our Setup: Exponential Cost and Rényi's entropy

- The previous results are for the expected message length (number of bits) $\mathbb{E}|M|$.
- What are the fundamental limits of exact sampling and channel simulation under a cost which is *exponential* in the message lengths? Can these limits be (almost) achieved by existing algorithms?

S. Hill October 22, 2025 17/31

Some Definitions

For a discrete random variable K with pmf P_K and any $\alpha \in (0,1) \cup (1,\infty)$, the Rényi entropy $H_{\alpha}(K)$ is

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{k \in \mathcal{K}} P_K(k)^{\alpha} \right).$$

S. Hill October 22, 2025 18/31

Some Definitions

For a discrete random variable K with pmf P_K and any $\alpha \in (0,1) \cup (1,\infty)$, the Rényi entropy $H_{\alpha}(K)$ is

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{k \in \mathcal{K}} P_K(k)^{\alpha} \right).$$

For $P \ll Q$ probability distributions and $\alpha \in (0,1) \cup (1,\infty)$, the Rényi divergence $D_{\alpha}(P||Q)$ is

$$D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \log \left(\mathbb{E}_{X \sim Q} \left[\left(\frac{\mathrm{d}P}{\mathrm{d}Q}(X) \right)^{\alpha} \right] \right).$$

S. Hill October 22, 2025 18 / 31

Some Definitions

For a discrete random variable K with pmf P_K and any $\alpha \in (0,1) \cup (1,\infty)$, the Rényi entropy $H_{\alpha}(K)$ is

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{k \in \mathcal{K}} P_K(k)^{\alpha} \right).$$

For $P \ll Q$ probability distributions and $\alpha \in (0,1) \cup (1,\infty)$, the Rényi divergence $D_{\alpha}(P||Q)$ is

$$D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \log \left(\mathbb{E}_{X \sim Q} \left[\left(\frac{\mathrm{d}P}{\mathrm{d}Q}(X) \right)^{\alpha} \right] \right).$$

Note that $\lim_{\alpha \to 1} H_{\alpha}(K) = H(K)$ and $\lim_{\alpha \to 1} D_{\alpha}(P||Q) = D(P||Q)$.

S. Hill October 22, 2025

Campbell Cost L(t)

For uniquely decodable binary encoding $M \in \{0,1\}^*$ of K having length |M| and for t > 0,

$$L(t) = \frac{1}{t} \log \left(\mathbb{E}[2^{t|M|}] \right).$$

S. Hill October 22, 2025 19/31

Campbell Cost L(t)

For uniquely decodable binary encoding $M \in \{0, 1\}^*$ of K having length |M| and for t > 0,

$$L(t) = \frac{1}{t} \log \left(\mathbb{E}[2^{t|M|}] \right).$$

Facts:

$$\lim_{t\to 0} L(t) = \mathbb{E}|M| \qquad \text{and} \qquad \lim_{t\to \infty} L(t) = \max_{\ell\in \mathbb{N} \ : \ \mathbb{P}(|M|=\ell)>0} \ell$$

S. Hill October 22, 2025 19/31

Campbell Cost L(t)

For uniquely decodable binary encoding $M \in \{0, 1\}^*$ of K having length |M| and for t > 0,

$$L(t) = \frac{1}{t} \log \left(\mathbb{E}[2^{t|M|}] \right).$$

Facts:

$$\lim_{t\to 0} L(t) = \mathbb{E}|M| \qquad \text{and} \qquad \lim_{t\to \infty} L(t) = \max_{\ell\in \mathbb{N} \ : \ \mathbb{P}(|M|=\ell)>0} \ell$$

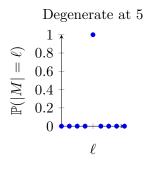
For a random variable K with Rényi entropy $H_{\alpha}(K)$ encoded optimally into message M, Campbell (1965) showed

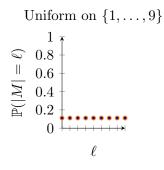
$$H_{\alpha}(K) \le L(t) < H_{\alpha}(K) + 1$$

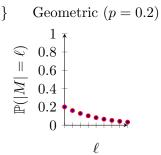
with
$$\alpha = \frac{1}{1+t}$$
.

S. Hill October 22, 2025

Why Care About L(t)?

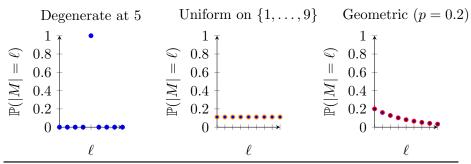






S. Hill October 22, 2025 20 / 31

Why Care About L(t)?



t	${\bf Degenerate}\ L(t)$	Uniform $L(t)$	${\bf Geometric}\ L(t)$
0	5	5	5
0.2	5	5.65	11.83
1	5	7.26	∞
5	5	8.56	∞
∞	5	9	∞

S. Hill October 22, 2025

Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with $\alpha = \frac{1}{1+t}$,

$$L(t) \ge D_{\frac{1}{\alpha}}(P||Q) + \frac{\alpha}{1-\alpha}\log_2(\alpha) - 1. \tag{1}$$

S. Hill October 22, 2025 21/31

Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with $\alpha = \frac{1}{1+t}$,

$$L(t) \ge D_{\frac{1}{\alpha}}(P||Q) + \frac{\alpha}{1-\alpha}\log_2(\alpha) - 1. \tag{1}$$

As $t \to 0$, we recover the lower bound

$$\mathbb{E}[|M|] \ge D(P||Q) - \frac{1}{\ln(2)} - 1.$$

S. Hill October 22, 2025 21/31

Upper Bound via Poisson Functional Representation

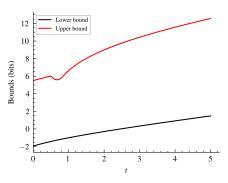
Theorem 2 For K chosen using the Poisson functional representation, for any $\epsilon > 0$ there exists a uniquely decodable encoding of K such that

$$L(t) \le (1+\epsilon)D_{\frac{1+\epsilon(1-\alpha)}{\alpha}}(P||Q) + c(\alpha,\epsilon), \tag{2}$$

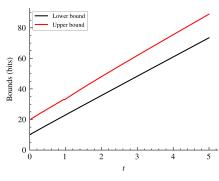
with $c(\alpha, \epsilon)$ a constant and $\alpha = \frac{1}{1+t}$.

S. Hill October 22, 2025 22 / 31

Gaussian Examples



$$P = \mathcal{N}(0, 1)$$
 and $Q = \mathcal{N}(1, 1)$



$$P = \mathcal{N}(0,1)$$
 and $Q = \mathcal{N}(5,1)$

S. Hill October 22, 2025 23 / 31

• The uppper bounds on $\mathbb{E}[|M|]$ are derived through bounding $\mathbb{E}[\log_2 K]$.

S. Hill October 22, 2025 24/31

- The uppper bounds on $\mathbb{E}[|M|]$ are derived through bounding $\mathbb{E}[\log_2 K]$.
- The upper bounds on L(t) are derived (more or less) by bounding $\mathbb{E}[K^t]$.

S. Hill October 22, 2025 24 / 31

- The uppper bounds on $\mathbb{E}[|M|]$ are derived through bounding $\mathbb{E}[\log_2 K]$.
- The upper bounds on L(t) are derived (more or less) by bounding $\mathbb{E}[K^t]$.
- For $\mathbb{E}[|M|]$, the lower bound D(P||Q) is relatively simple to prove.

S. Hill October 22, 2025 24 / 31

- The uppper bounds on $\mathbb{E}[|M|]$ are derived through bounding $\mathbb{E}[\log_2 K]$.
- The upper bounds on L(t) are derived (more or less) by bounding $\mathbb{E}[K^t]$.
- For $\mathbb{E}[|M|]$, the lower bound D(P||Q) is relatively simple to prove.
- For L(t) the lower bound $D_{\frac{1}{\alpha}}(P||Q)$ is *not* as simple, requiring a lower bound on $\mathbb{E}[K^t]$ for any sampling algorithm and an argument about injective (not just uniquely decodable) codes.

S. Hill October 22, 2025 24 / 31

Asymptotic Results

• We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.

S. Hill October 22, 2025 25 / 31

Asymptotic Results

- We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.
- We can fully characterize the optimal L(t)/n as $n \to \infty$:

S. Hill October 22, 2025 25 / 31

Asymptotic Results

- We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.
- We can fully characterize the optimal L(t)/n as $n \to \infty$:

Theorem 4 For any t>0, let $L_n^*(t)$ be the minimum Campbell cost for target $P^{\otimes n}$ and common randomness $\{U_i\}_{i>1} \sim Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$

$$\lim_{n \to \infty} \frac{L_n^*(t)}{n} = D_{\frac{1}{\alpha}}(P||Q).$$

Asymptotic Results

- We want to use the channel *n*-times with i.i.d. input X_1, \ldots, X_n . Thus we sample from the product distribution $P^{\otimes n}$ using samples from $Q^{\otimes n}$.
- We can fully characterize the optimal L(t)/n as $n \to \infty$:

Theorem 4 For any t > 0, let $L_n^*(t)$ be the minimum Campbell cost for target $P^{\otimes n}$ and common randomness $\{U_i\}_{i\geq 1} \sim Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

$$\lim_{n\to\infty}\frac{L_n^*(t)}{n}=D_{\frac{1}{\alpha}}(P||Q).$$

This generalizes known results: for the *minimum bits/sample* rate R_n^* for the *n*-dimensional product distributions,

$$\lim_{n \to \infty} \frac{R_n^*}{n} = D(P||Q).$$

S. Hill October 22, 2025

25 / 31

• A causal sampler accepts/rejects each candidate one-at-a-time (K is a stopping time w.r.t. $\{U_i\}_{i\geq 1}$).

- A causal sampler accepts/rejects each candidate one-at-a-time $(K \text{ is a stopping time w.r.t. } \{U_i\}_{i\geq 1}).$
- ullet Greedy rejection sampling $\sqrt{}$ Poisson functional representation ${\sf X}$

- A causal sampler accepts/rejects each candidate one-at-a-time $(K \text{ is a stopping time w.r.t. } \{U_i\}_{i\geq 1}).$
- ullet Greedy rejection sampling $\sqrt{}$ Poisson functional representation ${\sf X}$
- GRS and the PFR both achieve bits/sample rate D(P||Q) as $n \to \infty$.

- A causal sampler accepts/rejects each candidate one-at-a-time (K is a stopping time w.r.t. $\{U_i\}_{i\geq 1}$).
- Greedy rejection sampling $\sqrt{}$ Poisson functional representation X
- GRS and the PFR both achieve bits/sample rate D(P||Q) as $n \to \infty$.

Theorem 5 For any t>0 let $L_n^*(t)$ be the minimum Campbell cost over causal samplers between $P^{\otimes n}$ and $Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

$$\liminf_{n \to \infty} \frac{L_n^*(t)}{n} \ge D_{\beta}(P||Q), \quad \text{where } \beta = \begin{cases} \frac{\alpha}{2\alpha - 1}, & \alpha \in (1/2, 1) \\ \infty, & \alpha \in (0, 1/2]. \end{cases}$$

October 22, 2025 26 / 31

- A causal sampler accepts/rejects each candidate one-at-a-time (K is a stopping time w.r.t. $\{U_i\}_{i\geq 1}$).
- ullet Greedy rejection sampling $\sqrt{}$ Poisson functional representation ${\sf X}$
- GRS and the PFR both achieve bits/sample rate D(P||Q) as $n \to \infty$.

Theorem 5 For any t > 0 let $L_n^*(t)$ be the minimum Campbell cost over *causal* samplers between $P^{\otimes n}$ and $Q^{\otimes n}$. Then, with $\alpha = \frac{1}{1+t}$,

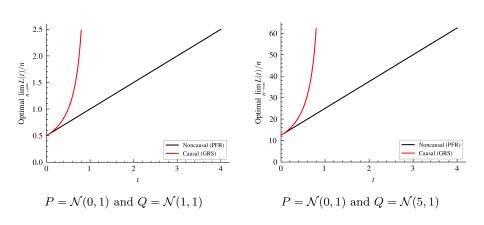
$$\liminf_{n \to \infty} \frac{L_n^*(t)}{n} \ge D_{\beta}(P||Q), \quad \text{where } \beta = \begin{cases} \frac{\alpha}{2\alpha - 1}, & \alpha \in (1/2, 1) \\ \infty, & \alpha \in (0, 1/2]. \end{cases}$$

• $D_{\beta}(P||Q) > D_{\frac{1}{\alpha}}(P||Q)$ in general!!!

S. Hill October 22, 2025

26 / 31

Asymptotic Gaussian Examples



Greedy rejection sampling does **strictly worse** in the **exponential cost regime**, and the gap is often significant.

Some Open Questions in Channel Simulation

• Fast channel simulation algorithms (linear time complexity in n and D(P||Q)), especially for P and Q Gaussians.

Some Open Questions in Channel Simulation

- Fast channel simulation algorithms (linear time complexity in n and D(P||Q)), especially for P and Q Gaussians.
- Tighter fundamental limits using measures other than the divergence/mutual information (see Flamich et al. (2025))

Some Open Questions in Channel Simulation

- Fast channel simulation algorithms (linear time complexity in n and D(P||Q)), especially for P and Q Gaussians.
- Tighter fundamental limits using measures other than the divergence/mutual information (see Flamich et al. (2025))
- Practical implementation of common randomness

• Channel simulation is a practically and theoretically interesting problem.

- Channel simulation is a practically and theoretically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.

- Channel simulation is a practically and theoretically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.
- The Campbell cost L(t) generalizes the expected message length and can be made more sensitive to the tails of the distribution.

- Channel simulation is a practically and theoretically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.
- The Campbell cost L(t) generalizes the expected message length and can be made more sensitive to the tails of the distribution.
- Under the Campbell cost, the Poisson functional representation is nearly optimal for exact sampling.

- Channel simulation is a practically and theoretically interesting problem.
- Sampling is a (highly general) way to perform channel simulation at a near-optimal encoding cost.
- The Campbell cost L(t) generalizes the expected message length and can be made more sensitive to the tails of the distribution.
- Under the Campbell cost, the Poisson functional representation is nearly optimal for exact sampling.
- Causal samplers (such as greedy rejection sampling, greedy Poisson rejection sampling, etc.) do strictly worse than noncausal samplers in the asymptotic Campbell cost.

References

- J. Ballé, V. Laparra, and E. P. Simoncelli, "End-to-end optimized image compression," 5th International Conference on Learning Representations, 2017.
- L. L. Campbell, "A coding theorem and Rényi's entropy," Information and Control, vol. 8, no. 4, pp. 423–429, 1965.
- G. Flamich, M. Havasi, and J. M. Hernández-Lobato, "Compressing images by encoding their latent representations with relative entropy coding," Advances in Neural Information Processing Systems, vol. 33, pp. 16131–16141, 2020.
- P. Harsha, R. Jain, D. McAllester, and J. Radhakrishnan, "The communication complexity of correlation," *IEEE Transactions on Information Theory*, vol. 56, no. 1, pp. 438–449, 2010.
- E. Lei, H. Hassani, S. S. Bidokhti, "Neural estimation of the rate-distortion function with applications to operational source coding," *IEEE Journal on Selected Areas* in *Information Theory*, no. 4, pp. 674-686, 2023.
- D. Goc and G. Flamich, "On channel simulation with causal rejection samplers," in IEEE International Symposium on Information Theory (ISIT). IEEE, 2024, pp. 1682–1687.
- C. T. Li and A. El-Gamal, "Strong functional representation lemma and applications to coding theorems," *IEEE Transactions on Information Theory*, vol. 64, no. 4, pp. 2583–2592, 2018.

S. Hill October 22, 2025

30 / 31

References

- G. Flamich, S. M. Sriramu, and A. B. Wagner, "The redundancy of non-singular channel simulation," arXiv preprint arXiv:2501.14053, 2025.
- C. T. Li, Channel Simulation: Theory and Applications to Lossy Compression and Differential Privacy. Now Publishers, Inc., 2024, vol. 21, no. 6.
- G. Flamich, "Greedy Poisson rejection sampling," Advances in Neural Information Processing Systems, vol. 36, pp. 37 089–37 127, 2023.
- J. Liu and S. Verdú, "Rejection sampling and noncausal sampling under moment constraints," in *Proc. IEEE International Symposium on Information Theory* (ISIT), 2018, pp. 1565–1569.
- G. Flamich and L. Theis, "Adaptive greedy rejection sampling," in Proc. IEEE International Symposium on Information Theory (ISIT), 2023, pp. 454–459.
- C. T. Li and V. Anantharam, "A unified framework for one-shot achievability via the Poisson matching lemma," *IEEE Transactions on Information Theory*, vol. 67, no. 5, pp. 2624–2651, 2021.
- S. Hill, F. Alajaji, and T. Linder, "Communication complexity of exact sampling under Rényi information," arXiv preprint arXiv:2506.12219, 2025.