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Channel Simulation

Use noiseless channel to simulate noisy channel X → Y

When the goal is to efficiently communicate M , one can achieve

E|M | ≈ I(X;Y ) bits
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Why Care?
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Lossy Source Coding

The encoder encodes the block (X1, . . . , Xn)

Decoder reconstructs (Y1, . . . , Yn)

Distortion: D = 1
n

∑n
i=1 E

[
d(Xi, Yi)]

Rate: R = 1
nE|M | (expected message length)

Asymptotically (n → ∞) optimal performance

R(D) = min
PY |X : E[d(X,Y )]≤D

I(X;Y ).
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The Usual Implementation

1 Quantizer Q

2 Source distribution P̂ = Q#P

3 Lossless source code KP̂

The scheme is then:

M = KP̂ ◦Q
Y = K−1

P̂
(M)
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Transform Coding (JPEG)

Usual transform: Q ◦ f ; for JPEG f is the discrete cosine transform
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Neural Transform Coding

Idea: Learn the transform f using a neural network

JPEG
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Neural Compression with Channel Simulation

Fully differentiable end-to-end system!
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Other Applications

Realizing the optimal compression channel in lossy source coding

Rate-distortion-perception tradeoff

Compression via implicit neural representation

Local differential privacy

Federated learning, . . .
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How Do We Perform Channel Simulation?

Common randomness is i.i.d. sequence {Ui}i≥1 ∼ PY

Transmit index K such that UK ∼ PY |X
Sampling: for sampling from general P given access to sequence
from Q, one can achieve

E|M | ≈ D(P ||Q) bits

Sampling can simulate X → Y with communication cost

E|M | ≈ EX [D(PY |X( · | X) || PY )] = I(X;Y ) bits
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Exact Sampling

Key Questions:

How can we choose K such that UK ∼ P exactly?

For any sampling algorithm, D(P ||Q) ≤ E[|M |]. How close can we
get to D(P ||Q)?
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Rejection Sampling

P (x)

A

Fact: (x, y) ∼ Unif(A) =⇒ x ∼ P .

Algorithmic Interpretation: If samples Uk are drawn uniformly, at
each stage accept sample Uk with probability P (Uk).

For Q not uniform, accept Uk with probability γ dP
dQ(Uk), γ > 0 s.t.

γ dP
dQ(u) ≤ 1 for all u.

RS: E[|M |] ≈ D∞(P ||Q) ≫ D(P ||Q).
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

0 0.5 1

dP

dQ

Rejection sampling

0 0.5 1

dP

dQ

Greedy rejection sampling
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Greedy rejection sampling

P = N (0.5, 0.05)|[0,1], Q = Uniform([0, 1]), γ = 0.55.
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.
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Rejection sampling
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Greedy rejection sampling

P(Accept) = γ dP
dQ(U2) = 0.67 P(Accept) = 1

0.255

(
dP
dQ(U2)− 1

)
= 0.89
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.
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dQ(U2) = 0.87
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Greedy Rejection Sampling

Rejection sampling: Accept Uk with probability γ dP
dQ(Uk),

γ > 0 s.t. γ dP
dQ(u) ≤ 1 for all u.

Greedy rejection sampling: Accept Uk with probability fk(Uk),
for function fk which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

0 0.5 1

U1U2 U3

dP

dQ

Rejection sampling

0 0.5 1

U1U2

dP

dQ

Greedy rejection sampling

GRS: E[|M |] ≤ D(P ||Q) + log2(D(P ||Q) + 1) + 4
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Poisson Functional Representation

For {Ti}i≥1 a rate-one Poisson process, choose K = argmin
i≥1

Ti
dP
dQ

(Ui)
,

Li and El-Gamal (2018).
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E[|M |] ≤ D(P ||Q) + log2(D(P ||Q) + 2) + 3
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Our Setup: Exponential Cost and Rényi’s entropy

The previous results are for the expected message length (number
of bits) E|M |.

What are the fundamental limits of exact sampling and channel
simulation under a cost which is exponential in the message
lengths? Can these limits be (almost) achieved by existing
algorithms?
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Some Definitions

For a discrete random variable K with pmf PK and any
α ∈ (0, 1) ∪ (1,∞), the Rényi entropy Hα(K) is

Hα(X) =
1

1− α
log

(∑
k∈K

PK(k)α

)
.

For P ≪ Q probability distributions and α ∈ (0, 1) ∪ (1,∞), the Rényi
divergence Dα(P ||Q) is

Dα(P ||Q) =
1

α− 1
log

(
EX∼Q

[(
dP

dQ
(X)

)α])
.

Note that lim
α→1

Hα(K) = H(K) and lim
α→1

Dα(P ||Q) = D(P ||Q).
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Campbell Cost L(t)

For uniquely decodable binary encoding M ∈ {0, 1}∗ of K having
length |M | and for t > 0,

L(t) =
1

t
log
(
E[2t|M |]

)
.

Facts:

lim
t→0

L(t) = E|M | and lim
t→∞

L(t) = max
ℓ∈N : P(|M |=ℓ)>0

ℓ

For a random variable K with Rényi entropy Hα(K) encoded
optimally into message M , Campbell (1965) showed

Hα(K) ≤ L(t) < Hα(K) + 1

with α = 1
1+t .
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Why Care About L(t)?
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∞ 5 9 ∞
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Lower Bound

Theorem 1 For any sampling algorithm and t > 0, with α = 1
1+t ,

L(t) ≥ D 1
α
(P ||Q) +

α

1− α
log2(α)− 1. (1)

As t → 0, we recover the lower bound

E[|M |] ≥ D(P ||Q)− 1

ln(2)
− 1.
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Upper Bound via Poisson Functional Representation

Theorem 2 For K chosen using the Poisson functional representation,
for any ϵ > 0 there exists a uniquely decodable encoding of K such that

L(t) ≤ (1 + ϵ)D 1+ϵ(1−α)
α

(P ||Q) + c(α, ϵ), (2)

with c(α, ϵ) a constant and α = 1
1+t .
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Gaussian Examples

P = N (0, 1) and Q = N (1, 1) P = N (0, 1) and Q = N (5, 1)
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Proof Techniques

The uppper bounds on E[|M |] are derived through bounding
E[ log2K ].

The upper bounds on L(t) are derived (more or less) by bounding
E[Kt].

For E[|M |], the lower bound D(P ||Q) is relatively simple to prove.

For L(t) the lower bound D 1
α
(P ||Q) is not as simple, requiring a

lower bound on E[Kt] for any sampling algorithm and an
argument about injective (not just uniquely decodable) codes.
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Asymptotic Results

We want to use the channel n-times with i.i.d. input X1, . . . , Xn.
Thus we sample from the product distribution P⊗n using samples
from Q⊗n.

We can fully characterize the optimal L(t)/n as n → ∞:

Theorem 4 For any t > 0, let L∗
n(t) be the minimum Campbell cost for

target P⊗n and common randomness {Ui}i≥1 ∼ Q⊗n. Then, with

α = 1
1+t ,

lim
n→∞

L∗
n(t)

n
= D 1

α
(P ||Q).

This generalizes known results: for the minimum bits/sample rate R∗
n

for the n-dimensional product distributions,

lim
n→∞

R∗
n

n
= D(P ||Q).
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Causal vs. Noncausal Sampling

A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {Ui}i≥1).

Greedy rejection sampling ✓ Poisson functional representation XXX
GRS and the PFR both achieve bits/sample rate D(P ||Q) as
n → ∞.

Theorem 5 For any t > 0 let L∗
n(t) be the minimum Campbell cost

over causal samplers between P⊗n and Q⊗n. Then, with α = 1
1+t ,

lim inf
n→∞

L∗
n(t)

n
≥ Dβ(P ||Q), where β =

{
α

2α−1 , α ∈ (1/2, 1)

∞, α ∈ (0, 1/2].

Dβ(P∥Q) > D 1
α
(P∥Q) in general!!!
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Asymptotic Gaussian Examples

P = N (0, 1) and Q = N (1, 1) P = N (0, 1) and Q = N (5, 1)

Greedy rejection sampling does strictly worse in the exponential
cost regime, and the gap is often significant.
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Some Open Questions in Channel Simulation

Fast channel simulation algorithms (linear time complexity in n
and D(P ||Q)), especially for P and Q Gaussians.

Tighter fundamental limits using measures other than the
divergence/mutual information (see Flamich et al. (2025))

Practical implementation of common randomness
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Main Takeaways

Channel simulation is a practically and theoretically interesting
problem.

Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.
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