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Channel Simulation

Common
randomness

A Y

M e {0,1}*
z~Pxy —> Encoder > Decoder >y~ Py|X( . | 1’)

@ Use noiseless channel to simulate noisy channel X — Y

@ When the goal is to efficiently communicate M, one can achieve

E|M|~ I(X;Y) bits
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Lossy Source Coding

z~Px —> Encoder

M e {0,1}*

@ The encoder encodes the block (X1, ...

e Decoder reconstructs (Y7, ...

Yn)

Decoder >

, Xn)
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Lossy Source Coding

M € {0, 1}*
> Decoder —> Y

z~Px —> Encoder

@ The encoder encodes the block (X1,...,X})

e Decoder reconstructs (Y1,...,Y},)
e Distortion: D = 13" | E[d(X;,Y))]
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M e {0,1}*
z~Px —> Encoder > Decoder —> Y

@ The encoder encodes the block (X1,...,X})
e Decoder reconstructs (Y1,...,Y},)

e Distortion: D = 13" | E[d(X;,Y))]

o Rate: R = LE|M| (expected message length)
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e
Lossy Source Coding

M e {0,1}*
z~Px —> Encoder > Decoder —> Y

e The encoder encodes the block (X1,...,Xy)
Decoder reconstructs (Y1,...,Y},)

Distortion: D = 13" | E[d(X;,Y;)]

Rate: R = LE|M| (expected message length)

Asymptotically (n — oo) optimal performance

R(D) = min I(X;Y).
Py x : E[d(X,Y)]<D
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M e {0, 1}*
z~Py — Encoder » Decoder > Y

Q@ Quantizer )
@ Source distribution P = QuP
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The Usual Implementation

M e {0, 1}*
z~Py — Encoder » Decoder > Y

Q@ Quantizer )
@ Source distribution P = QuP
@ Lossless source code K p
The scheme is then:
o M = KP e} Q
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The Usual Implementation

M e {0, 1}*
z~Py — Encoder » Decoder > Y

Q@ Quantizer )
@ Source distribution P = QuP
@ Lossless source code K
The scheme is then:
o M=KpoQ
oY =K, (M)
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Transform Coding (JPEG)

Inverse

Transform
e

Usual transform: @ o f; for JPEG f is the discrete cosine transform
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Neural Transform Coding

Idea: Learn the transform f using a neural network

Analysis
Transform
Ya

A Synthesis
Entrgpy > ——>| Transform
Coding
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antizafion 9s
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Neural Compression with Channel Simulation

Pre-trained
VAE
Decoder

Pre-trained
VAE
Encoder

Channel Simulation

p(z | a:) Black Box

— z~p(z|2)

Latent
Distribution

Fully differentiable end-to-end system!
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o Rate-distortion-perception tradeoff
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Other Applications

Realizing the optimal compression channel in lossy source coding
o Rate-distortion-perception tradeoff

o Compression via implicit neural representation

o Local differential privacy

o Federated learning, ...
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How Do We Perform Channel Simulation?

— {Ui}iz1 ~ Py

z~Px —> Encoder Decoder —> Uk ~ Py|X( - z)

e Common randomness is i.i.d. sequence {U;};>1 ~ Py
o Transmit index K such that Ux ~ Py|x

e Sampling: for sampling from general P given access to sequence
from @, one can achieve

E|M|~ D(P||Q) bits
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How Do We Perform Channel Simulation?

— {Ui}iz1 ~ Py

z ~Px —> Encoder Decoder —> Uk ~Pyix(- [ 2)

Common randomness is i.i.d. sequence {U;}i>1 ~ Py

Transmit index K such that Ux ~ Py|x

Sampling: for sampling from general P given access to sequence
from @, one can achieve

E|M|~ D(P||Q) bits
Sampling can simulate X — Y with communication cost
E[M| ~ Ex[D(Py x(- | X) | Py)] = I(X;Y) bits
October 22, 2025  12/31



Exact Sampling
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Exact Sampling

.

Encoder

{Ui}iz_1 ~Q

N

Sender

Key Questions:

Y

Receiver

Decoder

———> Ug ~P

e How can we choose K such that Ux ~ P exactly?
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Exact Sampling

.

{Ui}iz_1 ~Q

N

Encoder

Sender

Key Questions:

Y

Receiver

Decoder

———> Ug ~P

e How can we choose K such that Ux ~ P exactly?

e For any sampling algorithm, D(P||Q) < E[|M|]. How close can we

get to D(P||Q)?
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Rejection Sampling

o Fact: (z,y) ~ Unif(A) = x ~ P.



Rejection Sampling

o Fact: (z,y) ~ Unif(A) = x ~ P.

o Algorithmic Interpretation: If samples Uy are drawn uniformly, at
each stage accept sample Uy with probability P(Uy).
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Rejection Sampling

o Fact: (z,y) ~ Unif(A) = x ~ P.

o Algorithmic Interpretation: If samples Uy are drawn uniformly, at
each stage accept sample Uy with probability P(Uy).

e For @ not uniform, accept Uy with probability 'y%(Uk), v >0 s.t.
fyg—g(u) <1 for all u.
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Rejection Sampling

o Fact: (z,y) ~ Unif(A) = x ~ P.

o Algorithmic Interpretation: If samples Uy are drawn uniformly, at
each stage accept sample Uy with probability P(Uy).

e For @ not uniform, accept Uy with probability 'y%(Uk), v >0 s.t.
fyg—g(u) <1 for all u.

RS: E[|M|] = Do (P||Q) > D(P||Q).
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v >0 s.t. ’yg—g(u) <1 for all u.



e
Greedy Rejection Sampling

e Rejection sampling: Accept Uj with probability ,), (Uk)

v >0 s.t. de( u) <1 for all u.

e Greedy rejection sampling: Accept Uy with probability fx(Uy),
for function f; which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.
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e
Greedy Rejection Sampling

o Rejection sampling: Accept U, with probability 7 (Uk)
v>0s.t. vy Q( u) <1 for all u.

e Greedy rejection sampling: Accept Uy with probability fx(Uy),
for function f; which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

Uy = 0.85_

‘ o—> :
0 0.5 1 0 0.5 1
Rejection sampling Greedy rejection sampling

P(Accept) = 735 (U1) = 0.275  P(Accept) = (%(Ul) - o) /1=0.5
Y



e
Greedy Rejection Sampling

o Rejection sampling: Accept U, with probability 7 (Uk)
v>0s.t. vy Q( u) <1 for all u.

e Greedy rejection sampling: Accept Uy with probability fx(Uy),
for function f; which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

U, =0.3
@ 1 o—> @ : o—
0 0.5 1 0 0.5 1
Rejection sampling Greedy rejection sampling

P(Accept) = 'de L(Us) =0.67 P(Accept) = gazz (%(Ug) - 1) =0.89
October 22, 2025  15/31



Greedy Rejection Sampling

e Rejection sampling: Accept U, with probability ’yg—g(Uk),
v >0 s.t. 7%@) <1 for all .

e Greedy rejection sampling: Accept Uy with probability fi(Uy),
for function f; which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

ar
dQ
U2 U3 =0.62 U1 Ul
L4 —@ o—> 1 o—>
0 0.5 1 0 0.5 1
Rejection sampling Greedy rejection sampling

P(Accept) = ”yg—g(Ug) =0.87
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e
Greedy Rejection Sampling

e Rejection sampling: Accept Uy with probability 7 (Uk)
v >0 s.t. ’de( u) <1 for all .

e Greedy rejection sampling: Accept Uy with probability fi(Uy),
for function f; which maximizes the acceptance probability at
stage k under the condition that the scheme is exact.

dpP E
d@ d@
Ug U] Ul
. + H ' H
0 0.5 1 0 0.5 1
Rejection sampling Greedy rejection sampling

GRS: E[|M]] < D(P||Q) +logy(D(P||Q) + 1) + 4
October 22, 3035 15/81
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Poisson Functional Representation

For {T},5, a rate-one Poisson process, choose K = arg mingp‘— a o

i>1 (U)
Li and El-Gamal (2018).
3 .
[ ]
Us, T:
(U4, T4) ( 5’. 5) (UGa TG)
® (Us, T3)
2 ®
Uz, T:
o ( " 2)
1 (Ur, Th)
dp L
dQ
0 : : : :
0 0.25 0.5 0.75 1
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Poisson Functional Representation

For {T},5, a rate-one Poisson process, choose K = arg mingp‘— a o

i>1 (U)
Li and El-Gamal (2018).
3 -
[ ]
(U4, T4) (U57.T5) (U6’ T6)
2 ® /‘_\(US’ T3)
&~ v
1] a@ (Ur, Th)
p \
0 : : : |
0 0.25 0.5 0.75 1
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Poisson Functional Representation

For {T},5, a rate-one Poisson process, choose K = arg mingp‘— a o

i>1 (U)
Li and El-Gamal (2018).
3 -
[ ]
(U4, T4) (U57.T5) (U6’ T6)
2 ® /‘_\(US’ T3)
&~ v
1] a@ (Ur, Th)
p \
0 : : : |
0 0.25 0.5 0.75 1

E[|[M[] < D(P||Q) +logo(D(P||Q) +2) + 3
October 22, 2025 16/81
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|
Our Setup: Exponential Cost and Rényi’s entropy

e The previous results are for the expected message length (number
of bits) E|M|.

e What are the fundamental limits of exact sampling and channel
simulation under a cost which is exponential in the message
lengths? Can these limits be (almost) achieved by existing
algorithms?
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Some Definitions

For a discrete random variable K with pmf Px and any
a € (0,1) U (1,00), the Rényi entropy H,(K) is

. i - log (Z PK(k)O‘>.

ke

Ho(X) =
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Some Definitions

For a discrete random variable K with pmf Px and any
€ (0,1) U (1, 00), the Rényi entropy H,(K) is

: i —log (Z PK(k)O‘> .

ke

Ho(X) =

For P < @ probability distributions and « € (0,1) U (1, 00), the Rényi

divergence Do (P||Q) is
Da(PIIQ) = 1og(EX~Q Kjgm) D
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Some Definitions

For a discrete random variable K with pmf Px and any
€ (0,1) U (1, 00), the Rényi entropy H,(K) is

: i —log (Z PK(k)O‘> .
ke

For P < @ probability distributions and « € (0,1) U (1, 00), the Rényi

divergence Dy (P||Q) is
o ()]

Note that lim Ho (K) = H(K) and lim Da(P||Q) = D(P||Q).
oa—r oa—r

Ho(X) =

Da(P|Q) =
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Campbell Cost L(t)

For uniquely decodable binary encoding M € {0,1}* of K having
length |M| and for ¢ > 0,

L(t) = %log(E[T'M']).

Facts:

lim L(t) = E|M| and lim L(t) = max l
t—0 t—o0 LeN : P(|M|=£)>0
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Campbell Cost L(t)
For uniquely decodable binary encoding M € {0,1}* of K having
length |M| and for ¢ > 0,
_1 bl M|
L(#) = 7 log (E[z ]).

Facts:

lim L(t) = E|M| and lim L(t) = l
t—=0 t—o0

max
(eN : P(|M|=£)>0

For a random variable K with Rényi entropy H, (K ) encoded
optimally into message M, Campbell (1965) showed

Ho(K) < L(t) < Ho(K) + 1
with o = %th

Octole 33 E0%s o
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_
Why Care About L(t)?

Degenerate at 5 Uniform on {1,...,9}  Geometric (p = 0.2)
1 o 1 1
< 0.8 < 0.8 < 0.8
0.6 0.6 0.6
= 04 = 04 = 04
= 0.2 E 02, ... & 02
0 0 0
14 14 ¢
t | Degenerate L(t) Uniform L(t) Geometric L(t)
0 5 ) )
0.2 ) 5.65 11.83
1 5 7.26 00
) ) 8.56 00
00 ‘ ) 9 00

Octole 33 E0%s 0 /5



Lower Bound

Theorem 1 For any sampling algorithm and ¢ > 0, with a = 1+rt’

(67

L(t) > D1 (P||Q) + —*— logy(a) — 1. (1)

l1—«o




Lower Bound

Theorem 1 For any sampling algorithm and ¢ > 0, with a = 1+rt’
@
L(t) =2 D1(Pl|Q) + ;— loga(a) — 1. (1)
As t — 0, we recover the lower bound
1
E[|M]|] > D(P —— 1.
101) 2 D(PIQ) - 1



Upper Bound via Poisson Functional Representation

Theorem 2 For K chosen using the Poisson functional representation,
for any € > 0 there exists a uniquely decodable encoding of K such that

L(t) < A+ ) D1 (PlIQ) + c(a ), (2)

with ¢(a, €) a constant and « = #t

Octole 33 E0%s




Gaussian Examples

12 = Lower bound = Lower bound
—_— Upperboundv 80— Upper bound
10
_ 8 2 60F
=
2 &
2 =
/ 2
0 -
72 1 1 1 1 1 0
0 1 2 3 4 5 0 1 2 3 4 5
t t
P=N(0,1) and Q = N (1,1) P=N(0,1) and Q = N(5,1)
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e The uppper bounds on E[|M]|] are derived through bounding
E[logy K ].



Proof Techniques

e The uppper bounds on E[|M]|] are derived through bounding
E[log, K |.

e The upper bounds on L(t) are derived (more or less) by bounding
E[K"].
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e The uppper bounds on E[|M]|] are derived through bounding
E[log, K |.

e The upper bounds on L(t) are derived (more or less) by bounding
E[K"].

e For E[|M]|], the lower bound D(P||Q) is relatively simple to prove.
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Proof Techniques

e The uppper bounds on E[|M]|] are derived through bounding
E[log, K |.

e The upper bounds on L(t) are derived (more or less) by bounding
E[K"].

e For E[|M]|], the lower bound D(P||Q) is relatively simple to prove.

e For L(t) the lower bound D1 (P||Q) is not as simple, requiring a

lower bound on E[K'] for any sampling algorithm and an
argument about injective (not just uniquely decodable) codes.

Octole 33 E0%s



e
Asymptotic Results

o We want to use the channel n-times with i.i.d. input Xi,...,X,.
Thus we sample from the product distribution P®" using samples
from Q®".
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e
Asymptotic Results

o We want to use the channel n-times with i.i.d. input Xi,...,X,.
Thus we sample from the product distribution P®" using samples
from Q®".

e We can fully characterize the optimal L(t)/n as n — oc:

Theorem 4 For any t > 0, let L% (t) be the minimum Campbell cost for
target P®" and common randomness {U;};5; ~ Q®". Then, with

1
Q=1

lim L) =D

n—oo N

(PllQ)-

Q=
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Asymptotic Results
X

e We want to use the channel n-times with i.i.d. input Xi,
Thus we sample from the product distribution P®" using samples

from Q®".
e We can fully characterize the optimal L(t)/n as n — oc:

Theorem 4 For any t > 0, let L% (t) be the minimum Campbell cost for
target P®" and common randomness {U;};5; ~ Q®". Then, with

1
Q=1
L* (¢t
lim "():D
n—oo N

This generalizes known results: for the minimum bits/sample rate R},

(PllQ)-

Q=

for the n-dimensional product distributions,
Ry,
D(P[|Q).

lim — =
n—oo N
25 /31
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Causal vs. Noncausal Sampling

e A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {U;}i>1).
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o Greedy rejection sampling v~ Poisson functional representation X
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e A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {U;}i>1).

o Greedy rejection sampling v~ Poisson functional representation X

e GRS and the PFR both achieve bits/sample rate D(P||Q) as
n — oo.
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Causal vs. Noncausal Sampling

e A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {U;}i>1).

o Greedy rejection sampling v~ Poisson functional representation X

e GRS and the PFR both achieve bits/sample rate D(P||Q) as
n — oo.

Theorem 5 For any t > 0 let LY (¢) be the minimum Campbell cost

over causal samplers between P®" and Q®". Then, with a = 1+rt’
Ly (t —a 1/2.1

Jim inf Z2() > Dy(P||Q), where g={ 21 “€ (1/2,1)

n—oo N 0, a € (0,1/2].
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Causal vs. Noncausal Sampling

e A causal sampler accepts/rejects each candidate one-at-a-time
(K is a stopping time w.r.t. {U;}i>1).

o Greedy rejection sampling v~ Poisson functional representation X

e GRS and the PFR both achieve bits/sample rate D(P||Q) as
n — oo.

Theorem 5 For any t > 0 let LY (¢) be the minimum Campbell cost

over causal samplers between P®" and Q®". Then, with o = 1+rt’

" 2 1/2,1
hmlnfL ® > Ds(P||Q), where g = ¢ 2071 a€(1/2,1)
n—00 0, o€ (0’ 1/2]

e Dg(P||Q) > D1(P||Q) in general!!!

1
«

Octole 33 E0%s 6



Asymptotic Gaussian Examples

25 o
2.0 50
= =
= = 40
~ ~
Eia E
_= ~530
£ 10 E
& 5 2
05 of
= Noncausal (PFR) Noncausal (PFR)
—— Causal (GRS) = Causal (GRS)
0.0 s s . . 0 . .
0 1 2 3 4 0 1 2 3 4
t t
P =N(0,1) and Q = N (1,1) P =N(0,1) and Q =N (5,1)

Greedy rejection sampling does strictly worse in the exponential
cost regime, and the gap is often significant.

Octole 33 0%



Some Open Questions in Channel Simulation

e Fast channel simulation algorithms (linear time complexity in n
and D(P||Q)), especially for P and () Gaussians.



Some Open Questions in Channel Simulation

e Fuast channel simulation algorithms (linear time complexity in n
and D(P||Q)), especially for P and ) Gaussians.

e Tighter fundamental limits using measures other than the
divergence/mutual information (see Flamich et al. (2025))
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Some Open Questions in Channel Simulation

e Fuast channel simulation algorithms (linear time complexity in n
and D(P||Q)), especially for P and ) Gaussians.

e Tighter fundamental limits using measures other than the
divergence/mutual information (see Flamich et al. (2025))

@ Practical implementation of common randomness

Octole 32 E0%s s /E
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Main Takeaways

e Channel simulation is a practically and theoretically interesting
problem.

e Sampling is a (highly general) way to perform channel simulation
at a near-optimal encoding cost.

e The Campbell cost L(t) generalizes the expected message length
and can be made more sensitive to the tails of the distribution.

e Under the Campbell cost, the Poisson functional representation is
nearly optimal for exact sampling.

e Causal samplers (such as greedy rejection sampling, greedy
Poisson rejection sampling, etc.) do strictly worse than
noncausal samplers in the asymptotic Campbell cost.

Octole 3305



References

J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” 5th International Conference on Learning Representations, 2017.
L. L. Campbell, “A coding theorem and Rényi’s entropy,” Information and Control,

vol. 8, no. 4, pp. 423-429, 1965.

G. Flamich, M. Havasi, and J. M. Herndndez-Lobato, “Compressing images by
encoding their latent representations with relative entropy coding,” Advances in
Neural Information Processing Systems, vol. 33, pp. 16 131-16 141, 2020.

P. Harsha, R. Jain, D. McAllester, and J. Radhakrishnan, “The communication
complexity of correlation,” IEEFE Transactions on Information Theory, vol. 56,
no. 1, pp. 438-449, 2010.

E. Lei, H. Hassani, S. S. Bidokhti, “Neural estimation of the rate-distortion function
with applications to operational source coding,” IEEE Journal on Selected Areas
in Information Theory, no. 4, pp. 674-686, 2023.

D. Goc and G. Flamich, “On channel simulation with causal rejection samplers,” in
IEEE International Symposium on Information Theory (ISIT). I1EEE, 2024, pp.
1682-1687.

C. T. Li and A. El-Gamal, “Strong functional representation lemma and
applications to coding theorems,” IEEE Transactions on Information Theory,
vol. 64, no. 4, pp. 2583-2592, 2018.

Oetober 32,9025 3031



References

G. Flamich, S. M. Sriramu, and A. B. Wagner, “The redundancy of non-singular
channel simulation,” arXiv preprint arXiv:2501.14053, 2025.

C. T. Li, Channel Simulation: Theory and Applications to Lossy Compression and
Differential Privacy. Now Publishers, Inc., 2024, vol. 21, no. 6.

G. Flamich, “Greedy Poisson rejection sampling,” Advances in Neural Information
Processing Systems, vol. 36, pp. 37089-37 127, 2023.

J. Liu and S. Verdd, “Rejection sampling and noncausal sampling under moment
constraints,” in Proc. IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 1565-1569.

G. Flamich and L. Theis, “Adaptive greedy rejection sampling,” in Proc. IEEE
International Symposium on Information Theory (ISIT), 2023, pp. 454-459.

C. T. Li and V. Anantharam, “A unified framework for one-shot achievability via
the Poisson matching lemma,” IEEFE Transactions on Information Theory,
vol. 67, no. 5, pp. 2624-2651, 2021.

S. Hill, F. Alajaji, and T. Linder, “Communication complexity of exact sampling
under Rényi information,” arXiv preprint arXiv:2506.12219, 2025.

Octole 3305



	References
	References

